PROFESSIONAL SERVICES AGREEMENT THIS AGREEMENT, is made and entered into to be effective the "EffectiveDate" day of "EffectiveMonth", "Year", by and between the ORANGE COUNTY SANITATION DISTRICT, hereinafter referred to as "OC SAN", and "Company", for purposes of this AGREEMENT hereinafter referred to as "CONSULTANT". OC SAN and CONSULTANT are referred to herein collectively as the "Parties" or individually as a "Party." #### WITNESSETH: WHEREAS, OC SAN desires to engage a consultant for **Programming Professional Services**, **PSA2021-001**, to provide qualified staff as described in Attachment "A", Scope of Work; and Attachment "A1", Rules of Engagement, and, WHEREAS, CONSULTANT is qualified to provide the necessary services in connection with these requirements and has agreed to provide the requisite personnel and experience, and is capable of performing such services; and, WHEREAS, OC SAN has adopted procedures for the selection of professional services and has proceeded in accordance with said procedures to select a CONSULTANT to perform this work; and, WHEREAS, OC SAN shall manage selection of a Consultant for Task Order(s) and Task Directive(s) when requested after award of this AGREEMENT based on the most appropriate qualifications and fit; and, WHEREAS, at its regular meeting on «BoardMeetingDate» the Board of Directors, by Minute Order, accepted the recommendation of the Operations Committee to approve this AGREEMENT between OC SAN and CONSULTANT. NOW, THEREFORE, in consideration of the promises and mutual benefits, which will result to the parties in carrying out the terms of this AGREEMENT, it is mutually agreed as follows: #### 1. SCOPE OF WORK CONSULTANT agrees to furnish necessary qualified staff to accomplish the Scope of Work attached hereto as "Attachment A". Attachment "A" is hereby incorporated into this AGREEMENT. In the event of a conflict between the Scope of Work and this AGREEMENT, the terms of this AGREEMENT shall prevail. ### 2. COMPENSATION Total compensation shall be paid to CONSULTANT for services in accordance with the following provisions: PSA PSA2021-001 #### Α. Time and Material: Not to Exceed Aggregate Amount OC SAN shall compensate CONSULTANT for services performed under this AGREEMENT on a time and materials basis, not to exceed a maximum aggregate amount of «Grand Total Written Amount» Dollars (\$«Grand Total Amount») ("Total Compensation") during the term of the AGREEMENT. #### B. **Hourly Rates** As a portion of the total compensation to be paid to CONSULTANT, OC SAN shall pay to CONSULTANT a sum equal to the burdened salaries (salaries plus benefits, overhead, and profit) actually paid by CONSULTANT charged on an hourly-rate basis and paid to the personnel of CONSULTANT per Attachment "E". OC SAN shall also pay to CONSULTANT a sum equal to the premium costs for overtime, charged on an hourly-rate basis, actually paid by CONSULTANT to the non-exempt personnel of CONSULTANT plus profit. Premium costs for overtime will not include fringe and overhead. Attachment "E" is hereby incorporated by reference. Upon request of OC SAN, CONSULTANT shall provide OC SAN with certified payroll records of all employees' work that is charged to this AGREEMENT. #### C. **Overhead Rates** "Field Staff" are defined as project-assigned staff by CONSULTANT, working at OC SAN's facilities for a project-assigned period exceeding ninety (90) continuous calendar days. The overhead rates for Field Office Staff are included in Attachment "E". "Home Office Staff" are defined as staff assigned by CONSULTANT, supporting the project-assigned work, either by working at CONSULTANT's or Subconsultant's offices or at OC SAN's site for periods less than ninety (90) continuous calendar days. The overhead rates for Home Office Staff are included in Attachment "E". #### D. **Profit** Profit for CONSULTANT and Subconsultants shall be five percent (5%). Addenda shall be governed by the same maximum Profit percentage. As a portion of the total compensation to be paid to CONSULTANT and Subconsultants, OC SAN shall pay profit for all services rendered by CONSULTANT and Subconsultants for this AGREEMENT. #### E. **Subconsultants** For all Subconsultants, CONSULTANT may pay to Subconsultants total compensation on an hourly-rate basis per Attachment "E" - Fee Proposal Form and as specified in the Scope of Work. OC SAN shall pay to CONSULTANT the actual costs of Subconsultants, without markup. PSA PSA2021-001 Revised 062821 Page 2 of 17 #### F. **Escalation** For purposes of calculating hourly billing rates of CONSULTANT employees and any Subconsultant employees performing services under this AGREEMENT, the Maximum Hourly Rate as defined in Attachment "E" shall be adjusted annually based on the Employment Cost Index (ECI) of Los Angeles-Long Beach-Riverside, California as of July 1 of each year. This rate is from the United States Department of Labor Bureau of Labor Statistics. The annual adjustments shall not exceed three percent (3%). #### G. Reimbursable Direct Costs OC SAN will reimburse the CONSULTANT for reasonable travel and business expenses as described in this section and further described in Attachment "D" -Allowable Direct Costs to this AGREEMENT. The reimbursement of the above mentioned expenses will be based on an "accountable plan" as considered by Internal Revenue Service (IRS). The plan includes a combination of reimbursements based upon receipts and a "per diem" component approved by IRS. The most recent schedule of the per diem rates utilized by OC SAN can be found on the U.S. General Service Administration website at http://www.gsa.gov/portal/category/104711#. The CONSULTANT shall be responsible for the most economical and practical means or management of reimbursable costs inclusive but not limited to travel, lodging and meals arrangements. OC SAN shall apply the most economic and practical method of reimbursement which may include reimbursements based upon receipts and/or "per diem" as deemed the most practical. CONSULTANT shall be responsible for returning to OC SAN any excess reimbursements after the reimbursement has been paid by OC SAN. Travel and travel arrangements – Any travel involving airfare, overnight stays or multiple day attendance must be approved by OC SAN in advance. Local Travel is considered travel by the CONSULTANT within OC SAN geographical area which includes Orange, Los Angeles, Ventura, San Bernardino, Riverside, San Diego, Imperial and Kern Counties. Automobile mileage is reimbursable if CONSULTANT is required to utilize personal vehicle for local travel. Lodging – Overnight stays will not be approved by OC SAN for local travel. However, under certain circumstances overnight stay may be allowed at the discretion of OC SAN based on reasonableness of meeting schedules and the amount of time required for travel by the CONSULTANT. Such determination will be made on a case-by-case basis and at the discretion of OC SAN. Travel Meals – Per-diem rates as approved by IRS shall be utilized for travel meals reimbursements. Per diem rates shall be applied to meals that are appropriate for travel times. Receipts are not required for the approved meals. PSA PSA2021-001 **Revised 062821** Additional details related to the reimbursement of the allowable direct costs are provided in the Attachment "D" - Allowable Direct Costs of this AGREEMENT. OC SAN shall also pay to CONSULTANT actual costs for equipment rentals, leases or purchases with prior approval of OC SAN. OC SAN will not pay per diem for Field Office Staff nor will it pay for any relocation of staff to be assigned under this AGREEMENT. #### H. **Limitation of Costs** If, at any time, CONSULTANT estimates the cost of performing the services described in CONSULTANT's Task Authorizations will exceed seventy-five percent (75%) of the not-to-exceed amount of the Task Authorization. CONSULTANT shall notify OC SAN immediately, and in writing. This written notice shall indicate the additional amount necessary to complete the services. Any cost incurred in excess of the approved not-to-exceed amount, without the express written consent of OC SAN's authorized representative shall be at CONSULTANT's own risk. This written notice shall be provided separately from, and in addition to any notification requirements contained in the CONSULTANT's invoice and monthly progress report. Failure to notify OC SAN that the services cannot be completed within the authorized not-to-exceed amount is a material breach of this AGREEMENT. #### 3. REALLOCATION OF TOTAL COMPENSATION OC SAN, by its Director of Engineering, shall have the right to approve a reallocation of the incremental amounts constituting the Total Compensation, provided that the Total Compensation is not increased. #### 4. **KEY POSITIONS** CONSULTANT shall notify OC SAN in advance changes to any key CONSULTANT employees performing services under this AGREEMENT. Positions considered to be Key Positions are Point of Contact and any staff leading Task Authorizations and Task Directives under the AGREEMENT. Should a CONSULTANT employee within one of these categories become no longer available to OC SAN, CONSULTANT shall submit the resume and qualifications of the proposed replacement to OC SAN for approval as soon as possible, but in no event later than seven (7) calendar days prior to the departure of the incumbent Key Position unless CONSULTANT is not provided with such notice by the departing staff. #### 5. **PAYMENT** A. Monthly Invoice: CONSULTANT shall include in its monthly invoice, a detailed breakdown of costs associated with the performance of any work for that invoicing period, in a format acceptable to OC SAN. CONSULTANT shall warrant and certify the accuracy of these costs and provide all support documentation required by OC SAN. CONSULTANT understands that submitted costs are subject to Section 14 Audit Provisions. PSA PSA2021-001 **Revised 062821** Page 4 of 17 - B. Upon
receipt of a properly prepared invoice, as described above, payment shall be made by OC SAN to CONSULTANT within sixty (60) calendar days. - C. Upon satisfactory completion of the work performed hereunder and prior to final payment under this AGREEMENT for such work, or prior settlement upon termination of this AGREEMENT, and as a condition precedent thereto, CONSULTANT shall execute and deliver to OC SAN a release of all claims against OC SAN arising under or by virtue of this AGREEMENT other than such claims, if any, as may be specifically exempted by CONSULTANT from the operation of the release in stated amounts to be set forth therein. - D. Pursuant to the California False Claims Act (Government Code sections 12650-12655), any CONSULTANT that knowingly submits a false claim to OC SAN for compensation under the terms of this AGREEMENT may be held liable for treble damages and up to a \$10,000 civil penalty for each false claim submitted. This section shall also be binding on all Subconsultants. A CONSULTANT or Subconsultant shall be deemed to have submitted a false claim when the CONSULTANT or Subconsultant: (a) knowingly presents or causes to be presented to an officer or employee of OC SAN a false claim or request for payment or approval; (b) knowingly makes, uses, or causes to be made or used a false record or statement to get a false claim paid or approved by OC SAN; (c) conspires to defraud OC SAN by getting a false claim allowed or paid by OC SAN; (d) knowingly makes, uses, or causes to be made or used a false record or statement to conceal, avoid, or decrease an obligation to OC SAN; or (e) is a beneficiary of an inadvertent submission of a false claim to OC SAN, and fails to disclose the false claim to OC SAN within a reasonable time after discovery of the false claim. #### 6. TERM This AGREEMENT shall commence upon the effective date first written above, and shall continue in full force and effect through «Date», ("Initial Term") unless earlier terminated or extended as provided in the AGREEMENT. OC SAN, at its sole discretion, may elect to extend the term of this AGREEMENT up to an additional twelve (12) months, commencing «Date», and continuing through «Date», ("Option Term 1"), and thereupon require CONSULTANT to continue to provide services, and otherwise perform, in accordance with **Attachment "A"**, entitled "Scope of Work" and **Attachment "A1"**, entitled "Rules of Engagement". OC SAN, at its sole discretion, may elect to extend the term of this AGREEMENT up to an additional twelve (12) months, commencing "Date", and continuing through "Date", ("Option Term 2"), and thereupon require CONSULTANT to continue to provide services, and otherwise perform, in accordance with **Attachment "A"**, entitled "Scope of Work" and **Attachment "A1"**, entitled "Rules of Engagement". OC SAN's election to extend the AGREEMENT beyond the Initial Term shall not diminish its right to terminate the AGREEMENT for OC SAN's convenience or CONSULTANT's default as provided elsewhere in this AGREEMENT. The "maximum term" of this AGREEMENT shall be from the effective date first written above through "Date", which period encompasses the Initial Term and two (2) Option Terms. PSA PSA2021-001 #### 7. PREVAILING WAGES To the extent CONSULTANT intends to utilize employees who will perform work during the contract, as more specifically defined under Labor Code Section 1720, CONSULTANT shall be subject to prevailing wage requirements with respect to such employees. ## 8. CALIFORNIA DEPARTMENT OF INDUSTRIAL RELATIONS (DIR) REGISTRATION AND RECORD OF WAGES - A. To the extent CONSULTANT's employees and/or Subconsultants who will perform Work during the design and preconstruction phases of a construction contract for which Prevailing Wage Determinations have been issued by the DIR and as more specifically defined under Labor Code Section 1720 et seq, CONSULTANT and Subconsultants shall comply with the registration requirements of Labor Code Section 1725.5. Pursuant to Labor Code Section 1771.4, the Work is subject to compliance monitoring and enforcement by the DIR. - B. The CONSULTANT and Subconsultants shall maintain accurate payroll records and shall comply with all the provisions of Labor Code Section 1776, and shall submit payroll records to the Labor Commissioner pursuant to Labor Code Section 1771.4(a)(3). Penalties for non-compliance with the requirements of Section 1776 may be deducted from progress payments per Section 1776. - C. Pursuant to Labor Code Section 1776, the CONSULTANT and Subconsultants shall furnish a copy of all certified payroll records to OC SAN and/or general public upon request, provided the public request is made through OC SAN, the Division of Apprenticeship Standards or the Division of Labor Enforcement of the Department of Industrial Relations. - D. The CONSULTANT and Subconsultants shall comply with the job site notices posting requirements established by the Labor Commissioner per Title 8, California Code of Regulations Section 16461(e). #### 9. INDEPENDENT CONTRACTOR The CONSULTANT and Subconsultants shall be independent contractors and not agents of OC SAN. Any provisions of this AGREEMENT that may appear to give OC SAN the right to direct the CONSULTANT concerning the details of performing the professional services, or to exercise any control over such performance, shall mean only that the CONSULTANT shall follow the direction of OC SAN concerning the end results of the performance. #### 10. DOCUMENT OWNERSHIP - CONSULTANT PERFORMANCE A. Ownership of Documents for the Professional Services performed. All documents in all forms (electronic, paper, etc.), including, but not limited to, studies, sketches, drawings, computer printouts, disk files, and electronic copies PSA PSA2021-001 prepared in connection with or related to the Scope of Work or Professional Services, shall be the property of OC SAN. OC SAN's ownership of these documents includes use of, reproduction or reuse of and all incidental rights, whether or not the work for which they were prepared has been performed. OC SAN ownership entitlement arises upon payment or any partial payment for work performed and includes ownership of any and all work product completed prior to that payment. This Section shall apply whether the CONSULTANT's Professional Services are terminated: a) by the completion of the AGREEMENT, or b) in accordance with other provisions of this AGREEMENT. Notwithstanding any other provision of this paragraph or AGREEMENT, the CONSULTANT shall have the right to make copies of all such plans, studies, sketches, drawings, computer printouts and disk files, and specifications. OC SAN acknowledges that documents prepared through Professional Services must be revised and sealed by a professional engineer prior to their reuse on another project. OC SAN acknowledges that it assumes all risk associated with reuse of such documents, which are not undertaken by CONSULTANT. B. CONSULTANT shall not be responsible for damage caused by subsequent changes to or uses of the study or deliverable where the subsequent changes or uses are not authorized or approved by CONSULTANT, provided that the service rendered by CONSULTANT was not a proximate cause of the damage. #### 11. **INSURANCE** #### Α. General - Insurance shall be issued and underwritten by insurance companies i. acceptable to OC SAN. - ii. Insurers must have an "A-" Policyholder's Rating, or better, and Financial Rating of at least Class VIII, or better, in accordance with the most current A.M. Best's Guide Rating. However, OC SAN will accept State Compensation Insurance Fund, for the required policy of Worker's Compensation Insurance subject to OC SAN's option to require a change in insurer in the event the State Fund financial rating is decreased below "B". Further, OC SAN will require CONSULTANT to substitute any insurer whose rating drops below the levels herein specified. Said substitution shall occur within twenty (20) days of written notice to CONSULTANT, by OC SAN or its agent. - iii. Coverage shall be in effect prior to the commencement of any work under this AGREEMENT. #### B. **General Liability** The CONSULTANT shall maintain during the life of this AGREEMENT, including the period of warranty, Commercial General Liability Insurance written on an occurrence basis providing the following minimum limits of liability coverage: Two Million Dollars (\$2,000,000) per occurrence with Four Million Dollars (\$4,000,000) Page 7 of 17 aggregate. If aggregate limits apply separately to this contract (as evidenced by submission of ISO form CG 25 03 or 25 04), then the aggregate limit may be equivalent to the per occurrence limit. Said insurance shall include coverage for the following hazards: Premises-Operations, blanket contractual liability (for this AGREEMENT), products liability/completed operations (including any product manufactured or assembled), broad form property damage, blanket contractual liability, independent contractors liability, personal and advertising injury, mobile equipment, owners and contractors protective liability, and cross liability and severability of interest clauses. A statement on an insurance certificate will not be accepted in lieu of the actual additional insured endorsement(s). If requested by OC SAN and applicable, XCU coverage (Explosion, Collapse and Underground) and Riggers/On Hook Liability must be included in the General Liability policy and coverage must be reflected on the submitted Certificate of Insurance. Where permitted by law, CONSULTANT hereby waives all rights of recovery by subrogation because of deductible clauses, inadequacy of limits of any insurance policy, limitations or exclusions of coverage, or any other reason against OC SAN, its or their officers, agents, or employees, and any other consultant, contractor or subcontractor performing work or rendering services on behalf of OC SAN in connection with the planning,
development and construction of the project. In all its insurance coverages related to the work, CONSULTANT shall include clauses providing that each insurer shall waive all of its rights of recovery by subrogation against OC SAN, its or their officers, agents, or employees, or any other consultant, contractor or subcontractor performing work or rendering services at the project. Where permitted by law, CONSULTANT shall require similar written express waivers and insurance clauses from each of its Subconsultants of every tier. A waiver of subrogation shall be effective as to any individual or entity, even if such individual or entity (a) would otherwise have a duty of indemnification, contractual or otherwise, (b) did not pay the insurance premium, directly or indirectly, and (c) whether or not such individual or entity has an insurable interest in the property damaged. #### C. Umbrella Excess Liability The minimum limits of general liability and Automotive Liability Insurance required, as set forth herein, shall be provided for through either a single policy of primary insurance or a combination of policies of primary and umbrella excess coverage. Umbrella excess liability coverage shall be issued with limits of liability which, when combined with the primary insurance, will equal the minimum limits for general liability and automotive liability. #### D. Automotive/Vehicle liability Insurance The CONSULTANT shall maintain a policy of Automotive Liability Insurance on a comprehensive form covering all owned, non-owned, and hired automobiles, trucks, and other vehicles providing the following minimum limit of liability coverage: Combined single limit of Five Hundred Thousand Dollars (\$500,000). A statement on an insurance certificate will not be accepted in lieu of the actual additional insured endorsement. PSA PSA2021-001 Revised 062821 PROGRAMMING PROFESSIONAL SERVICES ### E. Drone Liability Insurance If a drone will be used, drone liability insurance must be maintained by CONSULTANT in the amount of One Million Dollars (\$1,000,000) in a form acceptable by OC SAN. ### F. Worker's Compensation Insurance The CONSULTANT shall provide such Workers' Compensation Insurance as required by the Labor Code of the State of California in the amount of the statutory limit, including Employer's Liability Insurance with a minimum limit of One Million Dollars (\$1,000,000) per occurrence. Such Worker's Compensation Insurance shall be endorsed to provide for a waiver of subrogation in favor of OC SAN. A statement on an insurance certificate will not be accepted in lieu of the actual endorsements unless the insurance carrier is State of California Insurance Fund and the identifier "SCIF" and endorsement numbers 2570 and 2065 are referenced on the certificate of insurance. If an exposure to Jones Act liability may exist, the insurance required herein shall include coverage for Jones Act claims. #### G. Errors and Omissions/Professional Liability CONSULTANT shall maintain in full force and effect, throughout the term of this AGREEMENT, standard industry form professional negligence errors and omissions insurance coverage in an amount of not less than Two Million Dollars (\$2,000,000) with limits in accordance with the provisions of this Paragraph. If the policy of insurance is written on a "claims made" basis, said policy shall be continued in full force and effect at all times during the term of this AGREEMENT, and for a period of five (5) years from the date of the completion of the services hereunder. In the event of termination of said policy during this period, CONSULTANT shall obtain continuing insurance coverage for the prior acts or omissions of CONSULTANT during the course of performing services under the term of this AGREEMENT. Said coverage shall be evidenced by either a new policy evidencing no gap in coverage or by separate extended "tail" coverage with the present or new carrier. In the event the present policy of insurance is written on an "occurrence" basis, said policy shall be continued in full force and effect during the term of this AGREEMENT or until completion of the services provided for in this AGREEMENT, whichever is later. In the event of termination of said policy during this period, new coverage shall be obtained for the required period to insure for the prior acts of CONSULTANT during the course of performing services under the term of this AGREEMENT. CONSULTANT shall provide to OC SAN a certificate of insurance in a form acceptable to OC SAN indicating the deductible or self-retention amounts and the expiration date of said policy, and shall provide renewal certificates not less than ten (10) days prior to the expiration of each policy term. PSA PSA2021-001 ### H. Proof of Coverage The CONSULTANT shall furnish OC SAN with original certificates and amendatory endorsements effecting coverage. Said policies and endorsements shall conform to the requirements herein stated. All certificates and endorsements are to be received and approved by OC SAN before work commences. OC SAN reserves the right to require complete, certified copies of all required insurance policies, including endorsements, effecting the coverage required, at any time. The following are approved forms that must be submitted as proof of coverage: Certificate of Insurance ACORD Form 25 or other equivalent Certificate of Insurance form. Additional Insurance (General Liability) The combination of (ISO Forms) CG 2010 and CG 2037 All other Additional Insured endorsements must be submitted for approval by OC SAN, and OC SAN may reject alternatives that provide different or less coverage to OC SAN. Additional Insured Submit endorsement provided by carrier for (Auto Liability) OC SAN approval. Waiver of Subrogation Submit workers' compensation waiver of subrogation endorsement provided by carrier for OC SAN approval. No endorsement is required. However, CONSULTANT is responsible for notifying OC SAN of any pending or actual insurance policy cancellation, as described in Article I. Cancellation and Policy Change Notice, below. ### I. Cancellation and Policy Change Notice The CONSULTANT is required to notify OC SAN in writing of any insurance cancellation notice it receives or other knowledge of pending or actual insurance policy cancellation, within two (2) working days of receipt of such notice or acquisition of such knowledge. Additionally, the CONSULTANT is required to notify OC SAN in writing of any change in the terms of insurance, including reduction in coverage or increase in deductible/SIR, within two (2) working days of receipt of such notice or knowledge of same. Said notices shall be mailed to OC SAN at: ORANGE COUNTY SANITATION DISTRICT 10844 Ellis Avenue Fountain Valley, CA 92708 Attention: Contracts, Purchasing & Materials Management Division ### J. Primary Insurance The General and Automobile Liability policies shall contain a Primary and Non Contributory Clause. Any other insurance maintained by OC SAN shall be excess and not contributing with the insurance provided by CONSULTANT. ### K. Separation of Insured The General and Automobile Liability policies shall contain a "Separation of Insureds" clause. #### L. Non-Limiting (if applicable) Nothing in this document shall be construed as limiting in any way, nor shall it limit the indemnification provision contained in this AGREEMENT, or the extent to which CONSULTANT may be held responsible for payment of damages to persons or property. #### M. Deductibles and Self-Insured Retentions Any deductible and/or self-insured retention must be declared to OC SAN on the Certificate of Insurance. All deductibles and/or self-insured retentions require approval by OC SAN. At the option of OC SAN, either: the insurer shall reduce or eliminate such deductible or self-insured retention as respects OC SAN; or the CONSULTANT shall provide a financial guarantee satisfactory to OC SAN guaranteeing payment of losses and related investigations, claim administration and defense expenses. #### N. Defense Costs The General and Automobile Liability policies shall have a provision that defense costs for all insureds and additional insureds are paid in addition to and do not deplete any policy limits. #### O. Subconsultants The CONSULTANT shall be responsible to establish insurance requirements for any Subconsultant hired by the CONSULTANT. The insurance shall be in amounts and types reasonably sufficient to deal with the risk of loss involving the Subconsultant's operations and work. #### P. Limits Are Minimums If the CONSULTANT maintains higher limits than any minimums shown above, then OC SAN requires and shall be entitled to coverage for the higher limits maintained by CONSULTANT. #### 12. **CHANGES** In the event of a change in the Scope of Work or a change in Key Personnel, or change in hourly rates, as requested by OC SAN, the Parties hereto shall execute an Amendment to this AGREEMENT setting forth with particularity all terms of the new AGREEMENT. CONSULTANT's compensation for additional services authorized and performed in accordance with this AGREEMENT shall be agreed to OC SAN and CONSULTANT in writing prior to the time that the additional services are authorized. An Amendment shall be executed to document the change. #### 13. PROJECT TEAM AND SUBCONSULTANTS Neither this AGREEMENT nor any interest herein nor claim hereunder may be assigned by CONSULTANT either voluntarily or by operation of law, nor may all or any part of the AGREEMENT be subcontracted by CONSULTANT, without the prior written consent of OC SAN. Consent by OC SAN shall not be deemed to relieve CONSULTANT of its obligation to comply fully with all terms and conditions of this AGREEMENT. CONSULTANT shall provide to OC SAN, prior to execution of this AGREEMENT, the names and full description of all Subconsultants and CONSULTANT's project team members anticipated to be used on this Project under this AGREEMENT by CONSULTANT.
CONSULTANT shall include a description of the work and services to be done by each Subconsultant and each of CONSULTANT's team member. CONSULTANT shall include the respective compensation amounts for CONSULTANT and each Subconsultant, broken down as indicated in Section 2- COMPENSATION. There shall be no substitution of the listed Subconsultants and CONSULTANT's team members without prior written approval by OC SAN. #### 14. **AUDIT PROVISIONS** - OC SAN retains the reasonable right to access, review, examine, and audit, any and all books, records, documents and any other evidence of procedures and practices that OC SAN determines are necessary to discover and verify that the CONSULTANT is in compliance with all requirements under this AGREEMENT. The CONSULTANT shall include OC SAN's right as described above, in any and all of their subcontracts, and shall ensure that these rights are binding upon all Subconsultants. - B. OC SAN retains the right to examine CONSULTANT's books, records, documents and any other evidence of procedures and practices that OC SAN determines are necessary to discover and verify all direct and indirect costs, of whatever nature, which are claimed to have been incurred, or anticipated to be incurred or to ensure CONSULTANT's compliance with all requirements under this AGREEMENT during the term of this AGREEMENT and for a period of three (3) years after its termination. - C. CONSULTANT shall maintain complete and accurate records in accordance with generally accepted industry standard practices and OC SAN's policy. The CONSULTANT shall make available to OC SAN for review and audit, all project PSA PSA2021-001 **Revised 062821** Page 12 of 17 related accounting records and documents, and any other financial data within 15 days after receipt of notice from OC SAN. Upon OC SAN's request, the CONSULTANT shall submit exact duplicates of originals of all requested records to OC SAN. If an audit is performed, CONSULTANT shall ensure that a qualified employee of the CONSULTANT will be available to assist OC SAN's auditor in obtaining all Project related accounting records and documents, and any other financial data. #### 15. LEGAL RELATIONSHIP BETWEEN PARTIES The legal relationship between the parties hereto is that of an independent contractor and nothing herein shall be deemed to transform CONSULTANT, its staff, independent contractors, or Subconsultants into employees of OC SAN. CONSULTANT'S staff performing services under the AGREEMENT shall at all times be employees and/or independent contractors of CONSULTANT. CONSULTANT shall monitor and control its staff and pay wages, salaries, and other amounts due directly to its staff in connection with the AGREEMENT. CONSULTANT shall be responsible for hiring, review, and termination of its staff and shall be accountable for all reports and obligations respecting them, such as social security, income tax withholding, unemployment compensation, workers' compensation and similar matters. #### 16. NOTICES All notices hereunder and communications regarding the interpretation of the terms of this AGREEMENT, or changes thereto, shall be effected by delivery of said notices in person or by depositing said notices in the U.S. mail, registered or certified mail, return receipt requested, postage prepaid and addressed as follows: ORANGE COUNTY SANITATION DISTRICT 10844 Ellis Avenue Fountain Valley, CA 92708-7018 Attention: Diane Marzano, Senior Contracts Administrator Copy: Michael Dorman, Engineering Manager #### CONSULTANT: - «Company» - «ConsultantsName» - «Address» - «CityStateZip» All communication regarding the Scope of Work, will be addressed to the Engineering Manager. Direction from other OC SAN staff must be approved in writing by OC SAN's Project Manager prior to action from the CONSULTANT. #### 17. TERMINATION OC SAN may terminate this AGREEMENT at any time, without cause, upon giving thirty (30) days written notice to CONSULTANT. In the event of such termination, CONSULTANT shall be entitled to compensation for work performed on a prorated basis through and including the effective date of termination. PSA 2021-001 CONSULTANT shall be permitted to terminate this AGREEMENT upon thirty (30) days written notice only if CONSULTANT is not compensated for billed amounts in accordance with the provisions of this AGREEMENT, when the same are due. Notice of termination shall be mailed to OC SAN at the address listed in Section 16 - NOTICES. #### 18. DOCUMENTS AND STUDY MATERIALS The documents and study materials for this Project shall become the property of OC SAN upon the termination or completion of the work. CONSULTANT agrees to furnish to OC SAN copies of all memoranda, correspondence, electronic materials, computation and study materials in its files pertaining to the work described in this AGREEMENT, which is requested in writing by OC SAN. #### 19. COMPLIANCE #### A. Labor CONSULTANT certifies by the execution of this AGREEMENT that it pays employees not less than the minimum wage as defined by law, and that it does not discriminate in its employment with regard to race, color, religion, sex or national origin; that it is in compliance with all federal, state and local directives and executive orders regarding non-discrimination in employment; and that it agrees to demonstrate positively and aggressively the principle of equal opportunity in employment. #### B. Air Pollution CONSULTANT and its subconsultants and subcontractors shall comply with all applicable federal, state and local air pollution control laws and regulations. #### 20. AGREEMENT EXECUTION AUTHORIZATION Both OC SAN and CONSULTANT do covenant that each individual executing this document by and on behalf of each Party is a person duly authorized to execute this AGREEMENT for that Party. ### 21. DISPUTE RESOLUTION In the event of a dispute arising between the parties regarding performance or interpretation of this AGREEMENT, the dispute shall be resolved by binding arbitration under the auspices of the Judicial Arbitration and Mediation Service ("JAMS"), or similar organization or entity conducting alternate dispute resolution services. ### 22. ATTORNEY'S FEES, COSTS AND NECESSARY DISBURSEMENTS If any action at law or in equity or if any proceeding in the form of an Alternative Dispute Resolution (ADR) is necessary to enforce or interpret the terms of this AGREEMENT, the prevailing party shall be entitled to reasonable attorney's fees, costs and necessary disbursements in addition to any other relief to which he may be entitled. PSA PSA2021-001 Page 14 of 17 #### 23. INDEMNIFICATION AND HOLD HARMLESS PROVISION CONSULTANT shall assume all responsibility for damages to property and/or injuries to persons, including accidental death, which may arise out of or be caused by CONSULTANT's services under this Agreement, or by its subconsultant(s) or by anyone directly or indirectly employed by CONSULTANT, and whether such damage or injury shall accrue or be discovered before or after the termination of the AGREEMENT. Except as to the sole active negligence of or willful misconduct of OC SAN, CONSULTANT shall indemnify, protect, defend and hold harmless OC SAN, its elected and appointed officials, officers, agents and employees, from and against any and all claims, liabilities, damages or expenses of any nature, including attorneys' fees; (a) for injury to or death of any person or damage to property or interference with the use of property, arising out of or in connection with CONSULTANT's performance under the AGREEMENT, and/or (b) on account of use of any copyrighted or uncopyrighted material, composition, or process, or any patented or unpatented invention, article or appliance, furnished or used under the AGREEMENT, and/or (c) on account of any goods and services provided under this AGREEMENT. This indemnification provision shall apply to any acts or omissions, willful misconduct, or negligent misconduct, whether active or passive, on the part of CONSULTANT or anyone employed by or working under CONSULTANT. To the maximum extent permitted by law, CONSULTANT's duty to defend shall apply whether or not such claims, allegations, lawsuits, or proceedings have merit or are meritless, or which involve claims or allegations that any of the parties to be defended were actively, passively, or concurrently negligent, or which otherwise assert that the parties to be defended are responsible, in whole or in part, for any loss, damage, or injury. CONSULTANT agrees to provide this defense immediately upon written notice from OC SAN, and with well qualified, adequately insured, and experienced legal counsel acceptable to OC SAN. This section shall survive the expiration or early termination of the AGREEMENT. #### 24. COMPLIANCE WITH OC SAN POLICIES AND PROCEDURES CONSULTANT shall comply with all OC SAN policies and procedures including the Contractor Safety Standards, as applicable, all of which may be amended from time to time. #### 25. CLOSEOUT When OC SAN determines that all Work authorized under the AGREEMENT is fully complete and that OC SAN requires no further work from CONSULTANT, or the AGREEMENT is otherwise terminated or expires in accordance with the terms of the AGREEMENT, OC SAN shall give the Consultant written notice that the AGREEMENT will be closed out. CONSULTANT shall submit all outstanding billings, work submittals, deliverables, reports or similarly related documents as required under the AGREEMENT within thirty (30) days of receipt of notice of AGREEMENT closeout. Upon receipt of CONSULTANT's submittals, OC SAN shall commence a closeout audit of the AGREEMENT and will either: i. Give the CONSULTANT a final AGREEMENT Acceptance: or PSA PSA2021-001 ii. Advise the CONSULTANT in writing of any outstanding item or items which must be furnished, completed, or corrected at the CONSULTANT's cost. CONSULTANT shall be required to provide adequate resources to fully support any
administrative closeout efforts identified in the AGREEMENT Such support must be provided within the timeframe requested by OC SAN. Notwithstanding the final AGREEMENT acceptance, the CONSULTANT will not be relieved of its obligations hereunder, nor will the CONSULTANT be relieved of its obligations to complete any portions of the work, the non-completion of which were not disclosed to OC SAN (regardless of whether such nondisclosures were fraudulent, negligent, or otherwise), and the CONSULTANT shall remain obligated under all those provisions of the AGREEMENT which expressly or by their nature extend beyond and survive final AGREEMENT Acceptance. Any failure by OC SAN to reject the work or to reject the CONSULTANT's request for final AGREEMENT Acceptance as set forth above shall not be deemed to be acceptance of the work by OC SAN for any purpose nor imply acceptance of, or AGREEMENT with, the CONSULTANT's request for final AGREEMENT Acceptance. #### 26. **PROHIBITION** During the term of this AGREEMENT, CONSULTANT and its Subconsultants may not propose on any construction work advertised by or on behalf of OC SAN, if such work presents actual or perceived conflict of interest with CONSULTANT's assignments with OC SAN. CONSULTANT and its Subconsultants shall promptly disclose to OC SAN when such conflict exists prior to participating in any work as advertised by OC SAN or on its behalf. CONSULTANT and its Subconsultants acknowledge and agree that OC SAN's determination regarding such conflicts, that may impact CONSULTANT's and its Subconsultants' ability to propose on the work as described herein, shall be final and cannot be appealed. #### **27**. **ENTIRE AGREEMENT** This AGREEMENT constitutes the entire understanding and AGREEMENT between the Parties and supersedes all previous negotiations between them pertaining to the subject matter thereof. IN WITNESS WHEREOF, this AGREEMENT has been executed in the name of OC SAN, by its officers thereunto duly authorized, and CONSULTANT as of the day and year first above written. ## CONSULTANT: COMPANY NAME | | Ву | | | |--------------|---|---|----------| | | | | Date | | | | Printed Name & Title | | | | | | | | | OR | ANGE COUNTY SANITATION DISTRICT | | | | | | | | | Ву | | | | | | John B. Withers
Board Chairman | Date | | | | | | | | Ву | Kelly A. Lore |
Date | | | | Clerk of the Board | Date | | | | | | | | Ву | | | | | Зу | Ruth Zintzun
Purchasing & Contracts Manager | Date | | Attachments: | Attachment "B" - I Attachment "C" - G Attachment "D" - G Attachment "E" - I Attachment "F" - I Attachment "G" - G Attachment "H" - G Attachment "I" - G Attachment "J" - I Attachment "J" - I | Rules of Engagement Not Used Conflict of Interest Disclaimer Allowable Direct Costs Fee Proposal Not Used Not Used Acknowledgement of Addenda Receipt Acknowledgement of Contract Agreement | | PSA Revised 062821 # ATTACHMENT "A" SCOPE OF WORK ### **ATTACHMENT A** ### SCOPE OF WORK #### I. SUMMARY The Orange County Sanitation District (OC SAN) is a special district responsible for wastewater conveyance and treatment for metropolitan Orange County, California. It has been in existence since 1954 and is the third largest wastewater treatment agency west of the Mississippi River. OC SAN is soliciting Proposals to provide Programming Professional Services (PPS) to support its engineering projects, which includes large and small capital projects and operationally funded repair projects. OC SAN's facilities consists of Water Reclamation Plant No. 1, Treatment Plant No. 2 and 15 pump stations. #### II. BACKGROUND OC SAN has budgeted for a 10-year \$3.0 billion capital inprovement program, the vast majority of which is managed by the Engineering Department OC SAN also have an active asset management program which includes many repair priector and, due to their complexity, are managed by its Engineering Department. OC SAN's Process Control Integration Group PCI) forms all programming of programmable logic controllers (PLCs) and human machine in artiace (HMI) for all plant and pump station projects along with the associated forms, sionin OC SAN utilizes Modicon Quantum PLC hardware and has recently migrated to Nodicon No580 due to obsolescence. The HMI utilizes Copland Roland Interpreted Sequention Processor (CRISP), which is a VAX based system. OC SAN is in the process of finding the procurement of a new control system that will standardize on a new control and Form system. For the plants and pump stations. Starting in late 2021, Project No. J-120 Process Control System. Upgrades will replace the existing HMI for the plants and pump stations. The existing PLCs will be replaced under future Capital Improvement Program (CIP) projects as part of a recommend or rehabilitation project. Over the next 5 years, there is a significant increase in the PCI workload due to construction projects and J-120, requiring the need for programming professional services. #### III. PROFESSIONAL SERVICES REQUIRED Following award of an agreement, OC SAN will determine when specific services are required. The mechanisms for requesting, reviewing, authorizing, and terminating services under this agreement are documented in Attachment "A1" – Rules of Engagement. As described in that attachment, work assignments will fall into one of the following types: - Task Authorizations. Task Authorizations have formal scopes of work and firm upper limits. - Task Directives. Task Directives are typically smaller than Task Authorizations, but do not have a firm upper limit. The selected firm will assist PCI by providing highly skilled and experienced resources to program and commission PLCs and HMI graphics and shall provide qualified programming resources to execute work through Task Authorizations and Task Directives. The provided resources shall include the appropriate experience balance that provides a high-quality, cost-effective project execution. Task Authorizations will be developed for a specific scope of work such as the programming of a PLC or the development of HMI screens for a specific process area. Task Authorization duties include but are not limited to: Programming and documenting Modicon Quantum and M580 PLCs and CRISP or new HMI system screens using OC SAN programming standards, reviewing PLC and remote input/output (I/O) panel shop drawings, reviewing and updating I/O lists (also known as SCADA Administrative Tool (SAT)), coordinating the programming with PCI staff, coordinating with OC SAN commissioning coordinator, bench testing programs, and commissioning programs during Operational Readiness Test (ORT), Functional Acceptance Testing (FAT), and Reliability Acceptance Testing (RAT). See Section 17410 Programming Operations. The selected firm's staff shall have a thorough working knowled and understanding of programmable logic controllers (using ladder logic and function blook) and configuration of HMI systems and graphics. Staff shall be able to interproceeding drawings and documents such as process and instrument diagraphics, panel drawings, and PLC commonication networks. ### **Estimated Full-Time Staff Required** The following staff levels are estimated base on projected programming and commissioning workloads. The actual number of staff will be based on the required hours for the selected firm to complete the angular organization of staff will be based on the required hours for the selected firm to complete the angular organization of staff will be based on the required hours for the selected firm to complete the angular organization of staff will be based on the required hours for the selected firm to complete the angular organization of staff will be based on the required hours for the selected firm to complete the angular organization of staff will be based on the required hours for the selected firm to complete the angular organization of staff will be based on the required hours for the selected firm to complete the angular organization of staff will be based on the required hours for the selected firm to complete the angular organization of staff will be based on the required hours for the selected firm to complete the angular organization of staff will be based on the required hours for the selected firm to complete the angular organization of selected firm to complete the angular organization of selected firm to complete the comp | | | Staff Need | ded by Cor | ntract Year | , | |---------------------|--------|------------|------------|-------------|---------| | Function | Yea 1 | Year 2 | Year 3 | Year 4 | Year 5 | | Fiscal Year | Y21-22 | FY22-23 | FY23-24 | FY24-25 | FY25-26 | | PLC/SCADA Programer | 6.0 | 6.0 | 6.0 | 6.0 | 5.0 | ### **IV. TASK ASSIGNMENTS** OC SAN will authorize specific tasks to be completed by CONSULTANT. These tasks will vary widely in size, cost, and complexity. Tasks will be authorized as either a Task Authorization or a Task Directive, as described in **Attachment "A1"** – Rules of Engagement. Task Authorizations have a formal scope of work and a fixed upper limit. Task Directives also have an explicit scope of work, but the level of detail may be lower. Task Directives need a budgetary estimate, but not a firm upper limit. #### V. PERSONNEL ASSIGNMENTS OC SAN will require CONSULTANT to provide staff to fill specific roles on specific projects, and, in some cases, for its Engineering Program, as described in **Attachment "A1"** – Rules of Engagement. #### **Personnel Authorizations** Personnel Authorizations authorize a particular individual to work on Task Directives #### VI. LOGISTICS AND
CONTRACT MANAGEMENT ### **Work Location** CONSULTANT's on-site staff shall be located at OC SAN's facilities in Fountain Valley or Huntington Beach, California. At times, work may be requirer the oc SAN facilities or at job site locations away from OC SAN facilities. At the CONSULTAL T's discretion and concurrence with the OC SAN representative, the assisted CONSULTANT staff may be located at CONSULTANT's home office when performing programming. All bench testing and commissioning shall be performed at OC SAN's facilities on OC SAN holidays. ### **Point of Contact/Supervision** CONSULTANT shall designate an individual as the single point of contact to direct efforts in fulfilling contracted obligations it der this Agreement. The selected designee shall be responsible for the direct supervicion assigned staff, including such activities as work schedules, quality of work to forme technical oversight, vacation requests, discipline, etc. The selected designee shall not be congective without prior written notification to the OC SAN representative. CONSULTANT is respons. 'e for supervision of its entire staff, including the requirements defined in **Attachment "A1**". Rules of Engagement: #### **OC SAN Project Procedures** CONSULTANT's staff assigned to work on OC San projects shall save project related deliverables, documents and/or records in OC San accessible locations i.e., OC San SharePoint servers and/or OC San licensed cloud-based applications such as Bluebeam, PMWeb or One Drive, as applicable to the project assignment, to comply with Public Records Act requirements. Accessibility to these locations shall be provided by OC San. ### **Provided Facilities & Equipment** OC SAN will provide the following for CONSULTANT's on-site staff: - Furnished office space at OC SAN - Computers, software, network, and printing capabilities #### Office telephone ### **Personal Protective Equipment** CONSULTANT staff assigned to OC SAN facilities may be exposed to known plant process and work hazards and therefore will be required to have appropriate Personal Protective Equipment (PPE) such as: eye and face protection (safety glasses), head protection (hard hat), hand protection (gloves), foot protection (safety toed shoes), high visibility clothing (Class 3 vests), hearing protection, personal gas monitor (4 gas), and other forms of PPE. CONSULTANT shall provide all equipment and training necessary to comply with OC SAN safety polices. Refer to Contractor Safety Standards – Attachment "K". ### **Time Tracking & Invoicing** CONSULTANT shall submit invoices, including cost and hours nonthly. Invoice shall be submitted no later than the 15th of each month. OC SAN mainers a project controls system containing detailed cost and hours information for all Engineering projects. The format for reporting hours shall be in an importable format, such a Microsoft Example, and contain, at a minimum, the following items: | Column | Desc 'ntion | | | |------------------------|---|--|--| | Project Number | OC SAN will provide list of project numbers. These numbers are subject to list as as r. v projects are added and existing projects are completed. | | | | Work Package
Number | OC SAL vill rovide unist of work package numbers. The work notinge numbers are subject to change as a project transitions from one price to e next. | | | | Employee ID | Each employee included in the hours report must contain a unique 'entifice' on number. | | | | Employee Name | Em _k yee name. | | | | Work Date | The week ending date when work was performed. | | | | Hours by Week | The total number of hours worked for the week. In addition, it may be necessary to report overtime hours which will require a separate report. | | | | Total Burdened Cost | The total burdened cost shall include actual salary, fringe costs, overhead, and profit by person. | | | ### **Performance Requirements** Assigned staff must perform their duties to OC SAN's satisfaction. OC SAN reserves the right to reject any proposed staff or replace any assigned staff at any time. The Point of Contact shall replace staff upon OC SAN's request. ### **Work Quality** CONSULTANT shall be responsible for the professional quality and technical competence of assigned staff supplied to OC SAN. Additionally, the firm shall be responsible for the coordination of all efforts and other services furnished under the agreement. ### **Management of Resource Assignments** OC SAN will maintain a cloud-based workflow tool to request, review, authorize, and close resource assignments. That workflow tool is currently PMWeb. CONSULTANT's Point of Contact will be required to utilize this tool to track all requests through their life cycles. OC SAN will use this workflow tool to verify that any invoiced costs have been duly approved through the workflow tool. Section 01701 Resource Assignment Management System for requirements. #### **Attachments** - Section 01701 Resource Assignment Management System - Section 17410 Programming Using OC SAN S andards - Section 17410 Attachment A SAT Data Dic. nar - Section 17410 Attachment B Samp' Technica, 'emorandum - Section 17410 Attachment C Sample Test - Section 17410 Attachment Γ mple gram Flowchart #### Section 01701 #### RESOURCE ASSIGNMENT MANAGEMENT SYSTEM #### PART 1 - GENERAL #### 1.1 SUMMARY - A. OC SAN will request, review, authorize, and closeout Resource Assignments under the Programming Professional Services (PPS) Agreement utilizing a Resource Assignment Management System (RAMS) using PMWeb. Resource Assignments include Task Authorizations and Task Directives. - B. The RAMS uses the same workflow engine as OC SAN uses to manage its construction contracts. The PMWeb application is a cloud-based solution used to facilitate the electronic exchange of information. PMWeb runs inside most internet browsers see "PMWeb Operating Requirements" described herein. OC SAN will provide CONSULTANT with user account and web address. Internet access is required to use PMWeb. - C. Use the PMWeb for all required documentation and correspondence related to Resource Assignments as described in article "System Use." #### 1.2 SYSTEM USE - A. Utilize PMWeb for the following: - 1. Proposing staff for Resource Assignme, on Tax Directives - 2. Submitting Task Authorization Proposals - 3. Receiving and tracking OC SAN vals of Receiving and tracking OC SAN vals of Receiving and tracking OC SAN value - 4. Revising authorized Resource Ascanner as - 5. Closing out completed _______inate. .esource Assignments. #### 1.3 PMWEB OPERATING RECUREMENTS - A. In order to process con spc uence. PMWeb as detailed herein, maintain the minimum requirements outlined in this are te. - 1. Internet vice requireme. are as follows: - a. Pro 'e broadbar internet access to Project staff utilizing PMWeb. - b. Docume tuplor and download speeds depend on internet speed. A fast internet service is high, or sommended. - 2. Provide the computer and networking hardware to access PMWeb. - B. Software requirements are as follows: - 1. Modern internet browser maintained with current versions/security patches such as: - a. Internet Explorer (latest released version) - b. Mozilla Firefox (latest released version) - c. Google Chrome (latest released version) - d. iOS Safari (latest released version) - 2. Microsoft Office 2019 or newer - 3. Adobe Acrobat or BlueBeam Vu/Revu (latest version) - 1.4 RAMS ACCESS AND LIMITATIONS - A. OC SAN will maintain the RAMS and serve as the administrator for the duration of this Project. - B. OC SAN will provide up to two PMWeb license(s) for use on this agreement only. - C. OC SAN will provide CONSULTANT with user access for approved personnel as needed for the duration of the Project. OC SAN shall control access to PMWeb by assigning user profiles and login credentials. - 1. OC SAN will create user accounts for CONSULTANT provided list of personnel that will be utilizing PMWeb. - 2. Notify OC SAN of any changes to personnel. Access modifications shall be coordinated as needed throughout the Project. - 3. Subconsultants shall not be provided access to PMWeb. Transmittal of information between CONSULTANT and its Subconsultants is not within the scope of PMWeb and shall be the responsibility of the CONSULTANT. - D. Routine maintenance of PMWeb may be required during the Project. Access to PMWeb may be restricted or unavailable at these times and will be scheduled outside of typical working hours whenever possible. - E. Should PMWeb become unavailable for an unanticipate period of time, the CONSULTANT shall notify OC SAN accordingly. Upon OC SAN's direction, correspondence shall proceed via email or other electronic means in accordance with the General Korulements until PMWeb access is restored. ### 1.5 CONNECTIVITY PROBLEMS - A. PMWeb is a web-based environment and is the crore subject to the inherent speed and connectivity problems of the Internet. CONSULTAN responsible for its own connectivity to the Internet. PMWeb response time is decident on the CONSULTANT's equipment, including processor speed, Internet access sp - B. OC SAN will not be liable for any delagrange sociated with the utilization of PMWeb including, but not limited to: slow respresse the ne, do in time periods, connectivity problems, or loss of information. #### 1.6 CONSULTANT'S RESPON 'BILI' - A. Provide personn suppo RAMS activities. - B. Responsible or the valid range curacy of information placed within RAMS by CONSULTANT personnel. - 1. Users shall be profiled in the use of computers, including internet browsers, email programs, Micros of Vord, Microsoft Excel, and Adobe or Bluebeam Portable Document Format (PDF) document distribution program. - 2. PDF documents shall be created through electronic conversion rather than being optically scanned whenever possible. - 3. PDF documents
shall be searchable. Should electronic conversion not be possible, optically scan at a resolution of 200 dots per inch and convert the scanned text using optical character recognition (OCR) capable software prior to uploading. - 4. PDF document security restrictions shall be set to enable commenting so that ENGINEER's comments can be added to the document using Adobe Reader or BlueBeam Vu/Revu. - C. Responsible for the training of its personnel in the use of the RAMS (outside what is provided by the ENGINEER) and the other programs indicated above as needed. #### 1.7 TRAINING A. The ENGINEER will provide a one-time training session of up to 2 hours to train up to 4 of the CONSULTANT's designated staff on general system requirements, procedures, and methods. - 1. CONSULTANT is responsible for training all other staff not included in ENGINEER's session including any replacement personnel. - 2. The ENGINEER will communicate the locations, date and time of training session. Training will occur within 14 days after the effective date of the Notice to Proceed (NTP). - B. CONSULTANT shall be required to train their personnel on the principles and operation of all other software utilized for this Contract. #### 1.8 COMMUNICATION PROCESS - A. All RAMS related documents requiring formal signatures shall be digital, and all copies digitally distributed. - 1. PMWeb conforms to the requirements set forth in California Government Code section 16.5 regarding digital signatures; therefore, digital signatures are in full force and effect and are legally the same as a hand-written signature. - 2. At least one RAMS account shall have the authority to approve Resource Assignments. - 3. Take care not to share PMWeb account passwords. - B. Official logs of assignments shall be maintained within Jr. 'S. #### 1.9 AUTOMATED SYSTEM NOTIFICATION A. Automated system notifications generated a PMWeb (e.g. .-system notices, system generated email, or email with attachment) all cor litute a formal written notification in compliance with the Contract Documents. #### Section 17410 #### PROGRAMMING USING OC SAN STANDARDS #### **PART 1 - GENERAL** #### 1.1 SUMMARY - A. Section includes: - 1. Programming of PLC's using OC SAN's programming standards. - 2. Programming of HMI's screens using OC SAN's programming standards. - 3. I/O to be programmed will be defined by the following project Contract Documents associated with a construction project: - a. SAT database - b. P&IDs - c. Elementary/control schematic - d. Control Strategies - e. Programming flowchart. #### 1.2 DEFINITIONS - A. <u>Bench Test</u>: A critical evaluation of the PLC ε J HMI and OIT interaction prior to installation in the field to ensure that all function of the PLC ε J HMI and OIT interaction prior to installation in the field to ensure that all function of the PLC ε J HMI and OIT interaction prior to - B. Functional Acceptance Test (F' Tests equiment and instrument operation and shutdowns under load (in REMOTE MAIL 11 mod of operation) using process fluid (water, air, etc.) to verify proper functionality the equipment and systems in REMOTE AUTOMATIC and AUTOMATIC modes of peration with software and water (as defined in the procedure or Part 3). Other proces of fluid to simulate normal operating conditions. Test automatic transfer switches with not all and standby power sources. Test medium-voltage and low-voltage swift and standby power sources. Test medium-voltage and low-voltage swift and standby power sources. Test medium-voltage and low-voltage swift and standby power sources. Test medium-voltage and low-voltage swift and standby power supplies of the system using actual conditions (i.e. and standby power supplies, generators, etc.). - C. <u>Human, achine Intel</u> <u>ce (HMI)</u>: A graphical user interface linked to PLC registers allowing the notitoring and control of the process. CRISP is the HMI software used on servers and work ations in the ICS network to display PLC data using the plant wide network. - D. <u>Modify</u>: Additions, deletions, rearrangement, change alteration, appendage, or any other change. - E. <u>Operator Interface Terminal (OIT)</u>: A local touch screen Industrial PC panel used to display and control a process associated with a single PLC or group of PLCs. - F. <u>Operational Readiness Test (ORT)</u>: Tests equipment, instrumentation, wiring, hardware, and software without water or any other process fluid in the LOCAL, HAND and REMOTE MANUAL modes of operation. - G. OC SAN Process Control Integration (PCI) Group: The group responsible for the ongoing SCADA system maintenance and enhancements. The group includes programmers and has access to other support personnel, program documentation, and other vital documents. PCI is a subunit of the ENGINEER. - H. OC SAN PLC Programming Standards: The OC SAN PLC Programming Standards are comprised of software templates to accomplish common functions such as variable speed pump control and a set of rules to guide programmers on how to organize programs, perform tagging, develop custom programming, etc. - I. <u>OC SAN PLC Software Templates:</u> The OC SAN PLC Software Templates are provided to the programmer by OC SAN. Software Templates shall be used as provided. The programmer shall not modify the code contained within a Software Template. Custom versions of Software Templates shall be requested in writing from ENGINEER. - J. <u>Programming Flowchart (PF)</u>: The Programming Flowchart is a tool that is used to outline all the sections required for a complete PLC program. The flowchart must include programming for all Real I/O, SCADA I/O, Templates, custom programming, including descriptions for how each point, Software Template or custom code block behaves. - K. <u>Process Control Software</u>: SCADA, PLC and SAT software packages with any integrated operator interfaces or monitor/controllers. - L. <u>Programmer</u>: The programmer is the person or team responsible for producing Process Control Software. The programmer is a subunit of the CONSULTANT. - M. <u>Reliability Acceptance Test (RAT)</u>: A test to check that the system can operate continuously in the intended manner for an extended riod without failure. During the RAT, the system under test shall be operated within sign. arameters reflecting the day-to-day operation of the facilities for an uninterrupted period. - N. Real Input/Output (Real I/O): Real I/O recors to the physic. (hardwired) input and output points of the PLC. - O. <u>SCADA Administration Tool (SAT)</u>: The tease AT will at times refer to two separate but related items depending on the context. - 1. A database (in MS Access) that is a source or both PLC and HMI descriptions. This database also contains interest Planet, and is used as a data repository for other functions. - 2. A custom deskt papplication that helps create and validate the SAT database as well as produce of put files are important PLC's and HMI's. - P. <u>Supervisory Control</u> <u>Data Acquisition System (SCADA)</u>: The SCADA system includes PLCs of the gh process data communications networks to a server that services HM workstatio use or control. - Q. <u>SCADA</u>. <u>out/Output</u> <u>CADA I/O</u>: SCADA I/O refers to virtual input and output to/from the HMI. Proce Contro Software. SCADA, PLC, and SAT software packages with any integrated operate into aces or monitor/controllers. #### 1.3 SUBMITTALS - A. Submittals shall be made as specified herein. - B. Submittals are required during the programming process as described in this section. Further detailed information regarding steps and submittal details can be found in Part 3 EXECUTION. - 1. Initial Program Development (Step 2) - a. I/O Information Documented in the SAT Database: Submit the real I/O records portion of the SAT database. - b. Preliminary Program Flowchart: Programmer shall start the preliminary PF during the onsite orientation session. Submit a preliminary PF. - c. Draft HMI Graphics: Submit draft HMI graphics for review. This shall include process overviews, process graphics, equipment detail screens, configuration screens, sequence screens, control stations, diagnostic screens, etc. - d. P&ID Drawings: Redline PDF P&ID drawings per changes during the initial program development - 2. Final Program Development. (Step 3) - a. Updated PF: Submit the updated PF for review. - b. PLC Program: The final version of the untested, fully documented, PLC program that is to be bench tested shall be fully documented and complete. All parameters, routines, subroutines, variables, etc. are complete. The logic of the process operation is tested in Step 5. Submit a PDF copy of the PLC program as well as a copy of the PLC program in its native format for review. - c. SAT Database: Submit a copy of the completed SAT database records with current information for review. - d. HIM Graphics: Include complete set of HMI graphic screens (color printout PDF screen captures). - e. HMI Program: The final version of the untered, fully documented, HMI program that is to be bench tested shall be fully commented and complete. The HMI screens are tested in Step 5. Submit the '.vi rogram in its native format for review. - e. Test Sheets and Test Procedures ubmit the bence test sheets and bench test procedures for review. #### 3. Bench Test: - a. Bench Test Sheet and Procedure Son Off Sheets: Submit the completed bench test sheets and procedure sign off sheets are correcting errors found during the bench testing for review. Attachment shows a Sample Test Sheet. - 4. Bench Tested Ar epted oftwar Submittal - a. Submit Be the Test of Septed Software in both native software and printout in searchable purior is. - b. Substitute of two shall be loaded into the PLC and HMI workstation to start the best sting and commiscioning. - 5. As-L "t Documer ation - a. Sub. Fin Documentation: Submit all as-built documentation updated to reflect all octions from
the design and submittal documents that occurred during installation, startup, and acceptance testing for review. #### 1.4 QUALITY ASSURANCE A. Review programming progress with PCI monthly. #### **PART 2 - PRODUCTS** #### 2.1 PLC PROGRAMMING - A. Perform the PLC programming using the OC SAN-accepted ProWORX NXT or Control Expert. - B. Develop a programming flowchart using the latest version of Microsoft Excel software. Microsoft Office Professional software, the latest version, is used for word processing, spreadsheets and for SAT. #### 2.2 HMI PROGRAMMING A. An HMI will be available at OC SAN for the programmer to use during graphics development and bench testing. #### **PART 3 - EXECUTION** #### 3.1 GENERAL - A. All PLC's and HMIs shall be programmed to the latest version of the OC SAN PLC Programming Standards. The PLC programming standards will be provided upon request. - B. All OC SAN programming tools shall be utilized in accordance with their standards and requirements. - C. The programming goal is to create an integrated, standardized control program for all SCADA system devices. The multiple steps and milestones described below are designed to achieve this goal with a minimum amount of rework, compromise, or wasted effort. - D. If changes, additions or deletions are made to an existing PLC, repeat the bench test of all process control software and real I/O connected to the PLC. The testing shall be performed in accordance with this Specification and School 01810, Commissioning. PCI will identify all minor program changes not subject to this requirement. - E. Electronic versions of PLC programs are available from Puin PDF format. - F. The P&ID Drawings used to develop the program do not show all the SCADA I/O required for a complete and operable program For example, confirming signals are not shown. #### 3.2 PROGRAMMING PROCESS (SCHL , " =) - A. The following is a high-level overview of a regramming process. Each of the steps is described in more detail in this section - B. A step in the programming proces below is considered complete when all the submittals required for at step ave been accepted by the ENGINEER. The selected firm may not proceed to the axt so process the process below is considered complete. - 1. <u>Step 1</u>: completion of this step constitutes 5 percent of programming completic. - a. rogrammers hall participate in a 2-week OC SAN onsite orientation session under rection of CI. During this session, the programmer(s) will be trained on PLC at. HM' standards, SAT, Flowchart, and Technical Memorandum developme. To submittal is required to complete this step. - 2. <u>Step 2</u>: Initial Program Development (Completion of this step constitutes 10 percent of programming completion). - a. Real I/O Information Documented in the SAT Database: Update the real input and output records of the SAT database develop. The real I/O SAT database is developed by the design engineer. Refer to "SAT Database" paragraphs in this Specification for more information on the SAT. - b. Preliminary Program Flowchart: Programmer to start the preliminary PF during the 2-week onsite orientation session. Submit the preliminary PF. - c. Graphics Sketches: Provide a pdf and native version of all unique graphics of the proposed HMI graphics. This shall include process overviews, process graphics, configuration screens, sequence screens, control stations, etc. - 3. <u>Step 3</u>: Final Program Development. All submittals to be completed prior to bench testing. (Completion of this step constitutes 30 percent of programming completion. All submittals to be completed prior to bench test.) - a. Updated PF: The PF shall be updated to show Work to date. - b. PLC Program: The final version of the untested PLC program shall be complete. All parameters, routines, subroutines, variables, etc. are complete and fully documented. NOTE: PLC Logic and SAT database is reviewed for conformance to standard. The logic of the process operation is tested in Step 5. - c. SAT Database: All appropriate SAT database records shall be completed with current information. - d. HMI Graphics: The final set of HMI graphic screens shall be complete. - e. Test Sheets and Test Procedures: Develop the proposed testing procedures with accompanying test sheets for the bench test. The test sheets and test procedures to be submitted and acceptance obtained prior to bench testing. Refer to Attachment C to this Specification second for format. - 4. <u>Step 4</u>: Bench Test (Completion of this step conduction): - a. Bench Test: Commission and exercite a bench test of OC SAN Plant 1. The bench test consists of loading the SAT dotabase, the HMI graphics and the PLC program into a standalone rorks' non networked to a test PLC, then testing all functions. NOTE: The best test is to assure coordination between PLC logic and HMI graphics, not the logical operation of the program. Changes made to the program in high may require a repeat of the bench test for all software, at the PCI's disciption - 5. <u>Step 5</u>: Project Corporation (Completion of this step constitutes 25 percent of programming completion). - a. Startup: Lend the Startabace, the HMI graphics, and the PLC program into the process work hard an and appropriate PLC. - b. Proceepmmonioning support in accordance with Section 01810, Corposissioning. C. - 6. <u>Step 6</u>: Built ocumentation (Completion of this step constitutes 15 percent of programming content this step constitutes are constituted as a second content of the programming progra - a. Resubmit final documentation: Submit all as-built documentation updates to reflect all deviations from the design and submittal documents that occurred during installation, startup, and acceptance testing. #### 3.3 OC SAN IN-HOUSE ORIENTATION A. Each programmer shall participate in a 2-week (5-day workweek) onsite orientation session under direction of PCI. The orientation is to familiarize the programmer with the OC SAN Process Control Software Standards, program flowchart, programming tools and PCI methods and procedures. #### 3.4 PROGRAM FLOWCHART A. The Program Flowchart (PF) is a sequential outline of the PLC program. The PF is a planning tool to be used throughout the programming effort as a map to create the program. The PF shall be updated regularly and submitted at two programming steps. The Step 2 PF submittal shall include all known programming steps; all programming subsystems; and all subsystems laid out but not finalized. The Step 3 PF shall be complete except for modifications required during the subsequent programming steps. The PF is part of the final as-built deliverable set of Project documentation. Attachment D contains a Sample Program Flowchart. - B. The programmer shall consider construction sequencing in creating the PF. Several PFs with associated programming may be required to support continuing process operation during construction. The programmer may need to write code to temporarily bypass portions of the final program. Overall control programs shall be created early in the programming process and shall be modified to support construction sequencing. - C. OC SAN's acceptance of the PF is for verification of conformance to the OC SAN's Process Control Software Standards only. Provide sufficient detail to deliver all specified functionality. #### 3.5 SAT DATABASE - A. The SAT database is used as the data source for both the PLC and the HMI databases. The programmer cannot change/add/delete from the atabase's structure and is responsible for understanding and obeying the field rules as published. - B. Obtain "Seed" Database: During the orientation, wain om OC SAN an electronic file of a partially filled-out "seed" SAT database for the Project. A proximately (8) of the (23) fields in this "seed" database have been filled to by the design engineer to support the design. These data fields include design information such as alarm points, engineering units, tag names, etc. as indicated in Attach. In the Air anis Specification section. - C. Complete the Project SAT Database: For each PLC affected by the Project, perform the following: - 1. Update/modify the existing in orman the Project SAT database to correct erroneous information and to reflee to actual/changed Project conditions. Identify each I/O that is changing active use to spare; from spare to active use; and/or all other modifications to the I/O Delete accords removed by Project programming. - 2. Add new record and a respective data fields (data cells) to reflect new Project equipment. - 3. Fill or the rentining of ta fields (data cells) for all the records in the complete 23-field Proect-specific AT database. Refer to Attachment A SAT Data Dictionary for more into mation. - 4. Submit a resulting Project-specific SAT database to PCI for acceptance, testing, acceptance, and egration into the OC SAN master software as specified elsewhere in this Specification section. - D. Verify Accuracy: The final submitted SAT database shall provide accurate I/O data and shall reflect the final, tested installation. #### 3.6 PLC PROGRAM SUBMITTAL A. Create the development version of the PLC program. All parameters, routines, subroutines, variables, etc. shall be complete. The process control software submittals shall be reviewed only for conformance to the OC SAN's Standards. The logical process shall be fully tested at acceptance testing. #### 3.7 BENCH TEST A. The bench test consists of loading the SAT database, the HMI graphics and the PLC program into a standalone workstation and PLC, then testing all functions. Perform a network-by-network review of program interaction. PCI staff may witness the bench test. Value changes, alarms, HMI graphics, limited simulation of logic and function, and data links are reviewed. Errors shall be repaired, and the software shall be certified by PCI for field installation. Note: Software changes after the bench test are subject to the following conditions: 1) All
changes shall be accepted by PCI in writing before execution. 2) The bench test is to assure coordination between the PLC logic and the HMI graphics. 3) Any changes to the process control software after the bench test may result in PCI requiring a partial or complete retest. PCI involvement will be limited to verifying the linking between the PLC and HMI graphics and the logic matches the agreed to PF and the SAT database. PCI may also perform limited functional testing of the software. The software bench test may be rejected if a pattern of errors is found. Correct all errors and perform an Unwitnessed bench test internally before resubmitting for the bench test. B. Create and/or modify the bench test procedures into the acceptance testing procedures. Create and/or modify the bench test sheets for use during the bench test and acceptance testing to document the test procedures. ENGINEER will not fully check the logic or functionality of the software. Attachment C is a Sample Test Sheet. ### 3.8 COMMISSIONING SUPPORT A. Provide commissioning support in accordance with Specification 01810, Commissioning. This specification describes the ster v-step commissioning process performed by the contractor and includes PCI's role in commissioning during Pre-ORT, ORT, Pre-FAT, FAT and PAT. The Programming Profession Services CONSULTANT will be performing the services performed by PC #### 3.9 FINAL DOCUMENTATION - A. Review and update all documentation reflect as-built conditions. Remove documentation that is not current or relevant to be Project. Provide direction on the method for integrating Project doc in a lation with existing OC SAN documentation systems. - B. All documentation shall any with a latest OC SAN Software Standards. - C. Provide electronic fit is for PC All doc mentation organized in logical sub-directories. #### 3.10 ATTACHMENTS - A. Attachment ^ ^1 Da. Dictionary - B. Attachm at B San, 'e Technical Memorandum - C. Attachm t C Samp Test Sheet - D. Attachment Sam e Program Flowchart - E. Attachment E action 01810 Commissioning * * * * * #### SAT DATA FIELD DESCRIPTION TABLE (DATA DICTIONARY) - A. The following listing is a data field description table (data dictionary) for the SAT database. SAT stands for SCADA Administration Tool. SAT is the tool that helps create and validate the SAT database itself. This database is the source for both ENGINEER's and CONTRACTOR's Real I/O list and programs. The table describes 26 fields (data cells) that comprise part of the record set in the SAT database. The text in the Field Description column describes the field data values (data cell values) expected by OCSD in the finalized database. - B. The Real I/O column with an "X" shall be filled out during the design phase by the ENGINEER or in the case of a CONTRACTOR programmed PLC, during the construction phase by the CONTRACTOR during the Step 2 development phase (as defined by Specification 17410 and 17411). The CONTRACTOR shall use this information to generate the construction drawings and loop diagrams, as well as calibration and setup of instrumentation ranges. Refer to the OCSD Tagging Procedure (Exhibit D8) for Loop Tag Numbers and OCSD Process Control Software Standards for further information or contact the OCSD Process Controls Integration (PCI) group for detailed explanation and examples. - C. The Development column with an "X" shall be filled or a ring the construction phase by the programmer. For CONTRACTOR programmed PLCs, fields with "X" in the Development column indicate the fields that are updated by the CONTRACTOR. - D. In the case of OCSD programmed PLCs, the Confidence of Database shall be filled out during the design phase by the ENGINEER and is given to the Confidence of NTR/ COR. The Chapter 13 Attachment A Exhibit D8 OCSD Tagging Procedure for Equipment of the provided upon request. | Real I/O | Development | SAT Data Fierchescription Table (Da a Dictionary) | | | |----------|-------------|---|---|--| | | | Field Name | Field Description | | | X | X | DropIndex | Drop dex number on a CRISP Data Highway | | | X | X | Building | Proce: area name to be defined in consultation with PCI (note: this value also a pears in the alarm summary page for each active and ack pwledged alarm) | | | Х | Х | Reg | register number (For Quantum I/O: DO = 0xxxxx, DI = 1xxxxx, AI = 3xxxxx or AO = 4xxxxx; for x80 I/O: DO = -3, DI = -4, AI = -2, or AO = -1) | | | X | X | Tag | OCSD Loop Tag Number = AASXXXXLLLM_PPP, where AA = Area (10, 11,), S = Sub-area (A, B,), XXXX = Function Code (LSHH, PMP,), LLL = Block Number (101, 102,), M = Suffix (A, B,), _PPP = PCI modifier (_LVL, _ALM,(note: real I/O points do not have the PCI modifier)) | | | Х | Х | Desc2 | Equipment descriptive name (e.g. FILTER PMP 3 (note: 14-character max.)) | | | X | X | Desc3 | Description, action, or function of the record (e.g. ON, OPENED, MODE DISPLAY, (note: 15-character max.), may also be used to complete Desc2) | | | Х | Х | RawUnitMin | Raw units low for PLC and CRISP analog inputs & outputs (PLC real I/O typically ranged 0-4095, CRISP typically ranged 0, matches device minimum range, or a restriction on input or output value) | | | 0/1 | Development | SAT Data Field Description Table (Data Dictionary) | | | |----------|-------------|--|---|--| | Real I/O | eve | | | | | Ž | ۵ | | | | | | | Field Name | Field Description | | | X | Х | RawUnitMax | Raw units high for PLC and CRISP analog inputs & outputs (PLC real I/O typically ranged 0-4095, CRISP typically ranged to match device minimum range, or a restriction on input or output value) | | | X | X | EngUnitMin | Engineering units low for PLC and CRISP analog inputs & outputs (PLC real I/O minimum output of device, i.e. 4mA value, CRISP ranged to device or function) | | | Х | Х | EngUnitMax | Engineering units high for PLC and CRISP analog inputs & outputs (PLC real I/O minimum output of device, i.e. fund value, CRISP ranged to device or function)) | | | Х | Χ | EngUnit | Engineering Units (e.g. GPM, CF',, | | | | X | Priority | Value used for alarm display or CRISP (i, 'cally set to '1' for all standard process alarms, set to '2' for LC & communations alarms, and '3' for highly critical process or extrical plarms (note, set to 0 for all non-alarm records)) | | | | X | Security | Value used for security in C ' ', ' (typically set to a value of '4' for all standard process selections a. ' setpoints, though there are other levels of security (See PC 'o, 'ditional a' ails) note: only used for records that are CRISP outputs to 'LCs, ' o for all other records) | | | | X | Alarm | The bit that configues RISP to alarm (set to 'TRUE' for alarms, set to 'FALSF or 'other 'cords) | | | | X | History | The ' that d signate a tag to be historized on the Enterprise Historian (s. 'o 'TRL' for all repords required to historized, set to 'FALSE' for all other or us (note, gramms, as well as operator process selections and are automatically added to the Enterprise Historian, do not set the recuire to 'TRUE')) | | | | Х | Trend | The L that cesignates a tag made available for trending in CRISP (set to 'TRUE for all values that appear on a CRISP trend window, set to 'FALSE' for all ther records) | | | Х | | PIDNumber | 'nfr national field, displaying on which P&ID a real I/O is point is identified (g. 20E-NP-110) | | | Х | | Panel Number | Informational field, displaying at which RIO panel a real I/O point is terminated (e.g. 15LFCP949C) | | | Х | | PLCDrop | Informational field, displaying at which RIO drop a real I/O point is terminated (typically 1) | | | Х | | PLCRack | Informational field, displaying at which RIO rack a real I/O point is terminated | | | Х | | PLCSlot | Informational field, displaying on which RIO card a real I/O point is terminated | | | X | | PLC Point | Informational field, displaying at which RIO card point a real I/O point is terminated (set to the point number on the card (e.g. 1-16 on a 16-point card DI card, 1-4 on a four-point card AO card, 1-9 on an eight-point AI card (note: AI cards typically reserve the 9 th point (and corresponding register) for a "MODULE STATUS CHANNEL", and will be reserved in SAT))) | | | X | | CardType | Informational field, displaying which Real I/O point Unity Card Type is identified as (e.g. BMXDAI1614 - 16 point digital input - 120VAC card) | | | Real I/O | Development | SAT Data Field Description Table (Data Dictionary) | | |----------|-------------|--|---| | | | Field Name | Field Description | | | X | CRISPRegType | Defines an record as it relates to its CRISP I/O type (set to '4' for all CRISP DO points (typically 002001-004000
registers), '3' for all CRISP DI points (typically 004001-005000), '2' for all CRISP AI points (typically 404001-406000), and '1' for all CRISP AO points (typically 402001-404000) (note: set to '0' for all non-CRISP I/O records)) | | X | X | PLCRegType | Defines an record as it relates to its PLC register type (set to '1' for all real analog inputs (typically 100001-101999 registers), '2' for all real analog outputs (typically 400001-402000 regis', 's), '3' for all real digital inputs (typically 300001-301999 registers) for all digital outputs (typically 400001-402000 registers), '5' for co. munications registers (typically 006609-007000 & 406601-407000 registers), '6' for all internal registers (typically 007001-009999 & / /001-40999s registers) (note: set to '0' for all CRISP I/O records)) | | Х | | CMMS Desc | Informational field, display the information contained in EID for the real I/O registers (a concatenation of the real fields within EID) | #### MEMORANDUM To: Frank Steiger/OCSD From: GEA Westfalia Separator Division Subject: Technical Memorandum for P1-101 Dewatering Centrifuge Control Software Configuration Date: September 2, 2020 Redacted ## **Summary** This Technical Memorandum has been redacted to remove proprietary information and shall only be used as an example for preparation of similar documentation. It describes the control implementation and software configuration for the new Dewatering Centrifuge system. The software portion of the project will include PLC ladder logic written using the District's existing Software Standards, as well as new operator interface screens using the District's Graphics Standards. ## **Control Strategy Overview** Each of the three Dewatering Centrifuges will be provided with a free-standing programmable logic controller (PLC) based control cabinet to contain the machines' start/stop, and sequencing controls as well as monitoring and safety/shutdown systems. Each centrifuge will operate independently, and all three will be programmed to function identically. The centrifuges can be operated in two modes. The two control modes are LOCAL and REMOTE. In both modes, the system protection will be provided by monitoring centrifuge parameters (vibration, temperature, etc.) for safety/shutdown set points. A LOCAL/REMOTE selector switch on each control panel selects between these two options. ## LOCAL Mode In LOCAL mode, centrifuge control is only available at the CCP. And centrifuge Start/Stop is only available at the CCP #### REMOTE Mode In REMOTE mode, centrifuge control is only available at the CCP. But Start/Stop is only available from SCADA. #### **DEWATERING CENTRIFUGE DETAILS** #### 1. Introduction #### 1.1. CONTROL PANELS The CA-1035 Control System will consist of the following control panels: Three (3) - Centrifuge Motor Control Center (CMCC) Panels - NEMA 12, fan/filter enclosure Three (3) - Centrifuge Control Panels (CCP) - NEMA 12, fan/filter enclosure Note: Lube oil pump motor starters are located in the Customer supplied MCC ## 1.2. PROGRAMMABLE LOGIC CONTROLLER (PLC) The PLC is configured for the following: - Full automation of the Centrifuge system - The PLC shall be programmed to operate on an independent basis, regardless of the communication status of the Plant Dewatering PLC. - Each PLC shall include integrally, or with additional modules, communication ports for the programming device, I/O hardware, and any required remote communication modules and retransmission as required, to provide fully functional links to I/O hardware and SCADA. - I/O communications shall employ the manufacturer's standard design for transmission speed, media length, and cabling. #### 2. PRODUCTS AND SYSTEM DESIGN #### 2.1. PLC HARDWARE/SOFTWARE - The centrifuge PLC shall be programmed using Proworx NXT programming software, version 2.20 or later. - The centrifuge OIT shall be programmed using Modicon Vijeo Designer programming software, version 6.2, Service Pack 5. - The PLC shall be programmed to operate on an independent basis, regardless of the communication status of SCADA. - The PLC will be a Modicon Quantum 140CPU53414B processor module. - The PLC power supply will be selected based on the total PLC I/O count. - The PLC rack/chassis will consist of three (3) 10-slot chassis. - Discrete input modules shall be 120 VAC, 16 inputs, isolated. - Discrete output modules shall be relay, 8 outputs. - Analog input modules shall be 8-channels, isolated. - Analog output modules shall be 4-channel, isolated. - RTD input modules shall be 8-channel, isolated, and wired for 3-wire, PT 100 RTD's. - Three (3) Ethernet network interface modules, NOE 771 11, shall be provided. Two shall be dedicated for interfacing to SCADA and one shall be dedicated for interfacing to the Centrifuge OIT, Bowl and Scroll VFDs. - The Operator Interface Terminal (OIT) shall be a Magelis Panel PC, model HMI PPH9A0701, 19", color, touch screen, with built-in Ethernet 10/100 Mbps communications port. #### 2.2. SYSTEM ARCHITECTURE The CCP shall be designed to: 3/23/2020 - Rev. 6 - Assist plant operating personnel by noting and announcing off-normal operating conditions and equipment failures - Perform calculations based on sensor inputs - Communicate with SCADA via Modbus TCP/IP Ethernet network - The PLC program will be divided into subroutines for each specific function of the system. #### 2.3. COMMUNICATIONS The Quantum PLC system utilizes separate communications modules for the required network interfaces as follows: - The CCP shall communicate with the owner's SCADA via two dedicated NOE 771 11 modules, utilizing an Modbus TCP/IP Ethernet network interface - The CCP shall communicate with the Centrifuge OIT and VFDs via a dedicated NOE 771 11 module and 8-port Ethernet switch utilizing a Modbus TCP/IP Ethernet network interface. - The CCP shall utilize one of the spare ports on the Ethernet switch for connecting a pc programming terminal. #### 2.4. PLC DATABASE AND I/O LIST - The structure of the system PLC database shall be hierarchical, and initial configuration of the database shall be performed by GEA. Signals required for interface with SCADA shall be organized into a separate subroutine, in which discrete and analog I/O addresses can be read from and written to the CCP. - I/O List The I/O list will be provided with the GEA "as built" electrical drawing package. #### 3. CENTRIFUGE SEQUENCE ## 3.1. CENTRIFUGE START A LOCAL/REMOTE selector switch is located on the CCP. In either mode, centrifuge control is only available at the CCP. In LOCAL mode, centrifuge Start and Stop is only available at the CCP. In REMOTE mode, Centrifuge Start and Stop is only available from SCADA. When the selector switch is in the Remote position, the CCP issues a SYSTEM REMOTE confirmation to SCADA. Note: The centrifuge SYSTEM READY (Power on and no shutdown alarms) signal must be active in order to start the centrifuge. The Centrifuge control system verifies that no fault conditions exist and maintenance mode is not active. The start-up sequence of the centrifuge is initiated by pushing the CENTRIFUGE START button on the CCP (LOCAL) or SCADA (REMOTE). The user may cancel the operation, if the start button was pressed accidentally, by pushing the CENTRIFUGE STOP button on the CCP (LOCAL) or SCADA (REMOTE). - The centrifuge is in the READY state and the CCP issues a hard-wired SYSTEM READY permissive signal to SCADA. - Depressing the CENTRIFUGE START pushbutton will de-energize and open the feed tube, seal water valve to begin seal water flow to the centrifuge. - After confirming seal water flow is established, a 10-minute (operator set point) prelube cycle begins, and lube motor run commands are issued. Both lube systems will be commanded to run at the same time. - After confirming that the lube motors are operational, the cooling water solenoid valves for each lube system's heat exchanger are energized. This will open the valves to allow cooling water to each heat exchanger. 3/23/2020 - Rev. 6 - After the Pre-lube cycle is finished the bowl motor run command is issued to the bowl VFD, and the bowl begins to rotate. The bowl will be ramped up to setpoint speed by the VFD in approx. 25 minutes. - After confirmation that the bowl VFD is running, and the bowl speed is above 370 RPM (operator set point), the scroll motor run command is issued, and the scroll begins to rotate. - The centrifuge is now running and the CCP issues a SYSTEM ON confirmation to SCADA. - Normally the diverter gate is closed if centrifuge is not processing. With the diverter gate CLOSED the cake pump is bypassed. - Normally the diverter gate flush valve is closed. When the bowl motor speed greater than zero, CCP will open the diverter gate flush valve, if the diverter gate is in the closed position. Note: SCADA will control the operation of the screw feeder and cake piston pump. - During this start cycle, the scroll will convey any remaining solids out of the bowl before the bowl has reached full speed, and therefore the Centrifuge torque will drop to low torque value (less than 10%) indicating that the bowl has very little solids remaining. - Once the centrifuge has reached speed and there are no faults, the Centrifuge is ready to accept sludge feed (Ready for Feed signal activated) and issues a hard-wired SYSTEM FEED permissive signal to SCADA. - SCADA will transmit a PLANT FEED hard-wired signal to the CCP when the sludge feed system components (sludge pump, polymer pump, grinder, etc.) are confirmed in operation. Refer to **Process Sequence** for the process start sequence and ancillary operation. Note 1: If there is no sludge fed to the Centrifuge for 30 minutes (operator set point), then Idle mode is active until sludge feed is started. Refer to 3.5 Feed System Off for additional detail. #### 3.2. CONTROLLED SHUTDOWN A controlled shutdown will be initiated when the user presses the CENTRIFUGE STOP button on the CCP (LOCAL) or SCADA (REMOTE), if Flush
and Shutdown is Disabled. It will also be triggered by some alarm shutdown conditions. See **Appendix A** for a list of alarm conditions that cause a shutdown. - Refer also to Flush & Shutdown and CIP Sequences - SYSTEM FEED permissive signal removed by centrifuge PLC (Ready for Feed signal off). Note: The SYSTEM FEED permissive signal can also be removed, without shutting down the centrifuge, by actuating the Feed Off pushbutton from the centrifuge OIT. - The PLANT FEED signal (derived from grinder, polymer pump, sludge feed pump, and sludge feed valve) at the PLANT Dewatering PLC, to the CCP is removed. - Bowl motor shuts off, allowing the bowl to coast to a stop. The scroll motor will continue to run. - Flush water valve opens immediately when bowl motor shuts off. - Flush water valve closes when bowl speed falls below 200 rpm. - Scroll motor shuts off when bowl speed is below 289 rpm. - Bowl and scroll come to rest. - The CCP removes the SYSTEM ON signal confirmation signal to SCADA, when bowl is off, scroll is off, and CIP is complete. - Lube pumps continue to run during post lube cycle (approx. 5 minutes). - When post lubrication is complete, seal water solenoid valve is energized and closes to shut off feed tube seal water. 3/23/2020 - Rev. 6 #### 3.3. IMMEDIATE SHUTDOWN An immediate shutdown is triggered by scroll motor alarms. See **Appendix A** for a list of all alarm conditions that cause an immediate shutdown. An Immediate Shutdown will function similar to a controlled shutdown; except that the scroll motor will be turned off at the same time as the bowl motor. #### 3.4. EMERGENCY SHUTDOWN The Emergency Shutdown is issued with any of the E-stop pushbuttons at the CCP, Bowl CMCC, Scroll CMCC, or station near stairs. All equipment associated with the system will be stopped instantaneously with no flush water. All centrifuge E-stop's will require a manual reset of first the E-stop push button pressed and then also the E-stop safety relay located in the CCP. A bowl speed high condition will also trigger the E-stop safety relay. NOTE: Seal water will remain on until the bowl and scroll come to a rest (less than 25 rpm). #### 3.5. FEED SYSTEM OFF #### 3.5.1. Feed System Off – Idle Mode (Non-Alarm) When the centrifuge has been requesting feed from the PLANT Thickening PLC for 30 minutes without being fed, the centrifuge will begin an idle flush sequence. The centrifuge continues to request sludge feed, but opens the flush water valve for an operator configurable duration (typically 2 minutes). This flush water valve open sequence will repeat every 30 minutes until sludge feed begins. ### 3.5.2. Feed System Off – Idle Mode (Alarm) After 2 minutes of no-feed, with FEED A/M station in Auto, the centrifuge generates a NO Feed Alarm. After 60 minutes of no-feed, with FEED A/M station in Off, generates a "System Feed Control Station is OFF" Alarm. Certain system alarms or an operator request will require that the feed system stop, while the centrifuge continues to run. See **Appendix A** for a list of all alarm conditions that cause a Feed Off condition. - The sludge feed to the centrifuge is stopped via an alarm or activating the Feed Off pushbutton from the centrifuge OIT. - SYSTEM FEED permissive signal removed by centrifuge PLC (Ready for Feed signal off). - The PLANT FEED signal (derived from grinder, polymer pump, sludge feed pump, and sludge feed valve) at the PLANT Dewatering PLC, to the CCP is removed. - If the centrifuge continues to run, but sludge feed is not active, the flush water valve will open for 5 minutes every 30 minutes (typically, operator adjustable). - Upon restarting (if applicable), the Centrifuge PLC re-issues the SYSTEM FEED permissive signal to SCADA. - Grinder, Sludge feed and Polymer feed are restarted by SCADA. Sludge feed valve also reopened by SCADA. SCADA re-issues the PLANT FEED signal to the CCP. Note: Torque Alarm HI and Vibration Alarm HI will initiate a Feed System Off (SYSTEM FEED permissive removed) sequence as noted above. The flush valve will remain open for 5 minutes (typical, operator adjustable). If the torque or vibration level drops below the alarm setpoints during the flush cycle, these alarms can be reset by the operator, thus allowing the flush water valve to close. The sludge feed will then be permitted to be restarted. ## 3.6. Flush & Shutdown Sequence If the process sequence is completed and it is desired to shut down the centrifuge, then press the centrifuge Stop button (Local or Remote). If the Flush & Shutdown sequence, is Enabled from the OIT (LOCAL) or SCADA (REMOTE), then the flush and shutdown sequence will be performed with a stop command. If flush and shutdown is disabled, then the equipment will stop without flushing and cleaning. The sequence is as follows: - Centrifuge currently running process - Operator ensures the *Flush & Shutdown* is Enabled on the OIT or Centrifuge Stop at SCADA. Once stop is initiated, flush and shutdown will proceed automatically. - SYSTEM FEED signal removed by the CCP to SCADA. - Sludge Pumps, Polymer Feed Pumps and Grinder are sequenced off by SCADA as described under *Process Sequence*. PLANT FEED signal removed by SCADA to the CCP. - Scroll runs at a preset fixed speed. - Centrifuge Flush Valve is opened. - When torque drops below the FLUSH WATER OFF torque setpoint (typically 25%), the centrifuge flush valve will close. - The CCP will remove the SYSTEM OPEN command to SCADA and the diverter gate will close and CCP will open the diverter gate flush valve. - The centrifuge will then automatically sequence into the CIP cleaning cycle described below. ## 3.7. CLEAN IN PLACE (CIP) The centrifuge will execute a cleaning sequence, also known as CIP (Clean-In-Place), after the flush and shutdown sequence has been completed, or the operator initiates the CIP sequence by pressing the CIP Start pushbutton on the OIT. Note: This function is not available from SCADA. The sequence for one cycle is as follows: - Number of CIP cycles is set to greater than zero (typically 3). - The *Flush & Shutdown* sequence is completed or the <CIP START> pushbutton is activated from the OIT or SCADA. - Flush valve is opened, until the bowl speed drops below 200 rpm. - The centrifuge bowl decelerates to a preset CIP Lower Bowl Speed Limit (approx. 100 rpm, operator adjustable). - Differential Speed is set to run 50% of range. - Centrifuge Flush Valve is closed below 200 rpm bowl speed. - Once the bowl speed reaches the CIP Lower Bowl Speed Limit, the bowl flush valve is opened above 200 rpm. - Once the CIP Upper Bowl Speed Limit (approx. 500 rpm, operator adjustable) is reached, the bowl decelerates to the preset CIP Lower Bowl Speed Limit level and the cycle will repeat itself as many times as the operator has configured the per the CIP cycle SP - Upon completion of the last CIP cycle, the centrifuge will coast down to a stop and follow a normal shutdown, including post-lube. 3/23/2020 - Rev. 6 ## 4. Centrifuge Equipment ## 4.1. Bowl Motor (15MCEN121/221/321) Starting and stopping of the bowl motor will be from the centrifuge PLC at the CCP. #### Manual Operation (Maintenance Mode): The bowl motor can be started/stopped from the OIT bowl motor control A/M station. When the Centrifuge is stopped or off, Maintenance mode can be selected. Then, pressing the START button will start the bowl motor. Note: Due to machine safety reasons, the bowl motor will only be permitted to run for a maximum of 10 seconds before shutting off. Pressing the STOP button will stop the scroll motor. #### Automatic Operation (Normal Mode): First ensure that Normal Mode and AUTO has been selected from the OIT bowl motor control A/M station. The bowl will start when the pre lube is complete. It will run until the centrifuge stop button has been pressed and the process is off. Refer also to Centrifuge Sequence. The bowl motor will stop when: - · Controlled stop is issued - Immediate stop is issued - Emergency stop is issued ## 4.2. SCROLL MOTOR (15MCEN131/231/331) Starting and stopping of the scroll motor will be from the centrifuge PLC at the CCP. ## Manual Operation (Maintenance Mode): The scroll motor can be started/stopped from the OIT scroll motor control A/M station. When the Centrifuge is stopped or off, Maintenance mode can be selected. Then, pressing the START button will start the scroll motor. Note: Due to machine safety reasons, the scroll motor will only be permitted to run for a maximum of 10 seconds before shutting off. Pressing the STOP button will stop the scroll motor. ## **Automatic Operation (Normal Mode):** First ensure that Normal mode and AUTO has been selected from the OIT scroll motor control A/M station. The scroll motor will start when the pre lube is complete and bowl speed has reached 289 rpm. It will run until the centrifuge stop button has been pressed and bowl speed is less than 289 rpm. Refer also to **Centrifuge Sequence**. The scroll motor will stop when: - Immediate stop is issued - Controlled stop is issued and bowl speed is less than 289 rpm - Emergency stop is issued 3/23/2020 - Rev. 6 ### 4.3. Flush Water Solenoid Valve (15MFY157/257/357) Opening and closing of the flush water valve will be from the centrifuge PLC at the CCP. #### Manual Operation: The flush water valve can be opened/closed from the OIT flush water valve control A/M station. Pressing the OPEN button will open the flush water valve and pressing the CLOSE button will close the flush water valve. Emergency stop will close the valve. #### **Automatic Operation:** First ensure that AUTO has been selected from the OIT flush water valve control A/M station. The flush water will turn on when: - Centrifuge Start-up the valve will open for a set amount of time (typically 5 minutes, operator adjustable), when bowl speed has reached a set level, (typically 700 rpm, operator adjustable). - Idle mode when the centrifuge is running at speed, but process is not active (not
feeding), the flush water valve will open for 5 minutes every 30 minutes. - Centrifuge Shutdown (Controlled or Immediate) the valve will open when a shutdown has been initiated and will remain on until the bowl speed drops below the FLUSH WATER OFF setpoint. - Flush & Shutdown the valve will open when Flush & Shutdown is enabled and the feed is stopped, and torque is above the preset level. Refer also to **Flush & Shutdown Sequence**. - CIP the valve will open when CIP is active above the FLUSH WATER OFF setpoint. Refer also to CIP Sequence. - High Torque alarm the valve will open for a set amount of time (typically 120 seconds, operator adjustable). Refer also to Appendix D PRESETS AND SECURITY SETUP for alarm settings. - High Vibration alarm the valve will open for a set amount of time (typically 120 seconds, operator adjustable). Refer also to Appendix D PRESETS AND SECURITY SETUP for alarm settings. Note: Emergency stop will position the valve closed in Automatic operation. #### 4.4. SEAL WATER SOLENOID VALVE (15MFY155/255/355) Opening and closing of the seal water valve will be from the centrifuge PLC at the CCP. It should be noted the seal water valve is fail-open, energize to close. ## Manual Operation (Maintenance Mode): In Maintenance Mode, the seal water valve can be opened/closed from the OIT seal water valve control A/M station. Pressing the OPEN button will open (deenergize) the seal water valve and pressing the CLOSE button will close (energize) the seal water valve. #### Automatic Operation (Normal Mode): First ensure that Normal Mode and AUTO has been selected from the OIT seal water valve control A/M station. The seal water will open (de-energize) when: • Centrifuge Start-up – the valve will open when the centrifuge START button has been pressed. The seal water will close (energize) when: - Centrifuge Shutdown (Controlled or Immediate) the valve will close when bowl speed is zero and after an off delay timer is complete. - Refer also to Centrifuge Sequence. # 4.5. LUBE OIL PUMP MOTORS (SOLIDS – 15MPMP140/240/340, LIQUIDS – 15MPMP147/247/347) Starting and stopping of the lube oil pumps will be from the centrifuge PLC at the CCP. #### Manual Operation (Maintenance Mode): Each of the two lube pump motors can be individually started/stopped from the OIT lube pump motor control A/M station (liquids-side or solids-side). Selecting Maintenance mode, then pressing the START button will start the lube pump motor. Pressing the STOP button will stop the lube pump motor. ### **Automatic Operation (Normal Mode):** First ensure that Normal Mode and AUTO has been selected from the appropriate OIT lube pump motor control A/M station. The lube pump motors will start and associated cooling water solenoid valves will open when the centrifuge start button has been pressed. Both pump motors will continue to run until the post lube timer is done. Refer also to **Centrifuge Sequence**. The lube pump motors will stop when: - · Emergency stop is issued - Lube pump motor fault (overload or fail to run) - Note: Lube oil instrumentation alarms noted in Appendix A will cause a centrifuge controlled shutdown # 4.6. LUBE OIL SYSTEM COOLING SOLENOID VALVES (SOLIDS – 15MFY146/246/346, LIQUIDS – 15MFY153/253/353) Opening and closing of the lube oil, cooling valves will be from the centrifuge PLC at the CCP. #### Manual Operation (Maintenance Mode): Each of the lube oil cooling water valves can be opened/closed from the OIT from the lube oil cooling water valve control A/M station (liquids-side or solids-side) when in Maintenance mode. Pressing the OPEN button will open the lube oil cooling water valve and pressing the CLOSE button will close the lube oil cooling water valve. #### Automatic Operation (Normal Mode): First ensure that Normal Mode and AUTO has been selected from the appropriate OIT lube oil cooling water valve control A/M station. The lube oil cooling water valves will open when: Centrifuge Start-up – the valves will open when the centrifuge START button has been pressed and confirmation that the lube oil pump is running has been received by the centrifuge PLC. The lube oil cooling water valves will close when: - Centrifuge Shutdown (Controlled or Immediate) the valve will close when the post lube timer is done and the lube has turned off. - Refer also to Centrifuge Sequence. #### 5. SCROLL CONTROL LOGIC The Centrifuge control system is designed with a proprietary SJM Scroll Control Module (SCM). This module allows the centrifuge to operate in either torque control or fixed differential speed control. #### 5.1. SJM SCROLL CONTROL The Westfalia SJM control algorithm is used to compute the necessary differential speed to maintain the torque setpoint. It can also be used to run at a fixed differential speed The following set points are used for SJM control: - Control Begin (starting torque) - Basic Differential Speed - Control Gradient Refer also to **APPENDIX E – CENTRIFUGE FORMULAS AND CALCULATIONS** for additional info. ## 6. PROCESS SEQUENCE (NORMAL MODE ONLY) The ancillary equipment is supplied by others and controlled by the CCP or SCADA, with certain interlocks as noted below. The centrifuge must first be up to speed and ready for feed before the process start sequence is initiated. The ancillary equipment includes: - a) Grinders - b) Polymer Feed Pumps - c) Sludge Feed Pumps - d) Diverter Gate - e) Diverter Gate Flush Valve - f) Screw Feeder/Cake Piston Pump ### 6.1. PROCESS START SEQUENCE Centrifuge ancillary equipment can be started when the centrifuge is ready for feed. The centrifuge is at speed and transmits a hard-wired, SYSTEM FEED permissive signal to SCADA to start all ancillary equipment in the proper sequence. Sludge and Polymer feed rates will be controlled by SCADA. Sludge and Polymer feed rate setpoints are entered from SCADA. - Diverter gate is closed. - Diverter gate flush valve is open. - Centrifuge ready for feed signal is indicated on the OIT. CCP transmits a hardwired, SYSTEM FEED permissive signal transmitted to SCADA. - Polymer system, grinder and sludge feed pump sequenced on by SCADA. Note: SCADA will ensure that the sludge feed valve is in the open position prior to starting the sludge feed pump. - SCADA confirms all ancillary equipment is running and transmits a hard-wired, PLANT FEED confirmation to the CCP. - Sludge feed rate is set at SCADA, and PID flow control is performed by SCADA. Sludge flow rate feedback is displayed on the OIT via hard-wired signal from the sludge feed flow meter. - Scroll Torque is above the TORQUE/DIVERTER GATE OPEN set point on the OIT for a preset time. - CCP transmits a SYSTEM OPEN hard-wired signal to SCADA and the diverter gate is opened. Note: If the diverter gate fails to open, SCADA will generate a diverter gate fail to open alarm and remove the PLANT FEED confirmation to the CCP. This will stop the grinder, polymer pump and sludge feed pump from continuing to feed the centrifuge. - CCP closes the diverter gate flush valve. • The Sludge Feed Density Meter will provide a solids concentration signal, via SCADA, for display on the OIT. #### 6.2. PROCESS STOP SEQUENCE Pressing the OFF button, on the OIT System Feed Control Station will stop the ancillary equipment from running. This does not stop the Centrifuge, only the sludge processing. Refer also to **Flush & Shutdown Sequence** as the recommended sequence for process stopping. - CCP removes the SYSTEM FEED permissive signal to SCADA. - SCADA sequences off the polymer system, grinder and sludge feed pump. The sludge feed valve is also closed. - SCADA removes the PLANT FEED confirmation signal to the CCP. - Scroll Torque is below the TORQUE/DIVERTER GATE CLOSE set point for a preset time. - CCP removes the SYSTEM OPEN hard-wired signal to SCADA and the diverter gate is closed. - CCP opens the diverter gate flush valve. - SCADA will control the operation of the screw feeder/cake piston pump. #### 7. PROCESS EQUIPMENT ## 7.1. GRINDERS (BY OTHERS) (15MGDR010/020) SCADA will control the operation of the Grinder. #### Manual Operation: From SCADA ## **Automatic Operation:** When the CCP transmits the SYSTEM FEED signal to SCADA, SCADA will sequence on the grinder after an adjustable preset time delay. It will shut down when Feed Off button is actuated, the SYSTEM FEED permissive is removed, flush & shutdown is activated, normal shutdown, or if any feed-off or shutdown alarms are active. #### Interlocks: The grinder will stop when: - The SYSTEM FEED signal is not active - Emergency Stop #### 7.2. POLYMER FEED PUMPS (BY OTHERS) (15MPMP910/920/930) SCADA will control the operation of the Polymer Feed Pumps. Polymer ratio setpoint is entered from SCADA. ## Manual Operation: From SCADA. #### Auto Operation: When the CCP transmits the SYSTEM FEED signal to SCADA, SCADA will sequence on the polymer pump after an adjustable preset time delay. It will shut down when the Feed Off button is actuated, the SYSTEM FEED permissive is removed, flush & shutdown is activated, normal shutdown, or if any feed-off or shutdown alarms are active. Polymer ratio control will be performed by SCADA. #### Interlocks: The polymer feed pump will stop when: - The SYSTEM FEED signal is not active - Emergency Stop ### 7.3. POLYMER FEED FLOW METERS (BY OTHERS) (15MFIT159/259/359) SCADA will use the polymer feed flow meters to control polymer flow to the centrifuge. The polymer flow meters are provided with an additional hard-wired connection to the CCP for display on the OIT. ## 7.4. SLUDGE FEED PUMPS (BY OTHERS) (15MPMP100/200/300) SCADA will control the operation of the Sludge Feed Pumps. Sludge feed flow rate setpoint is entered from SCADA. #### Manual Operation: From SCADA. #### **Auto Operation:** When the CCP transmits the SYSTEM FEED signal to SCADA, SCADA will sequence on the sludge pump after an adjustable preset time delay. It will shut down when the Feed Off button is actuated, the SYSTEM FEED permissive is removed, flush &
shutdown is activated, normal shutdown, or if any feed-off or shutdown alarms are active. Sludge feed PID flow control will be performed by SCADA. #### Interlocks: The sludge feed pump will stop when: - The SYSTEM FEED signal is not active - Emergency Stop ## 7.5. SLUDGE FEED FLOW METERS (BY OTHERS) (15MFIT119/219/319) SCADA will use the sludge feed flow meters to control sludge flow to the centrifuge. The sludge flow meters are provided with an additional hard-wired connection to the CCP for display on the OIT. #### 7.6. DIVERTER GATES (BY OTHERS) (15MGAT506/526/546) Automatic operation of the opening/closing of the Diverter Gate will be from the centrifuge PLC at the CCP. There will be no manual operation of the diverter gate from the OIT. Local manual operation is performed by SCADA or from the local control station. #### Manual Operation: From SCADA. #### **Automatic Operation:** The diverter gate is automatically started in the closed position when the centrifuge starts. When the torque is above the TORQUE/DIVERTER GATE OPEN set point for a preset time, the CCP will transmit a SYSTEM OPEN request to SCADA and the diverter gate will open. CCP will then remove the open command to the diverter gate flush water valve. When the process is stopped or on shutdown, and the torque falls below the TORQUE/DIVERTER GATE CLOSE set point for a preset time, after an operator adjustable timer, the CCP will remove the SYSTEM OPEN command to SCADA and the diverter gate will close. CCP will then open the diverter gate flush valve. The diverter gate will remain closed and the diverter gate flush valve will close when the centrifuge is off. #### Interlocks: The diverter gate will close when: - Centrifuge is off - Emergency Stop - PLANT FEED signal not active # 7.7. DIVERTER GATE FLUSH WATER SOLENOID VALVES (BY OTHERS) (15MFY502/522/542) Opening and closing of the diverter gate flush water valve will be from the centrifuge PLC at the CCP. #### Manual Operation: The diverter gate flush water valve can be opened/closed from the OIT diverter gate flush water valve control A/M station. Pressing the OPEN button will open the diverter gate flush water valve and pressing the CLOSE button will close the diverter gate flush water valve. #### **Automatic Operation:** First ensure that AUTO has been selected from the OIT diverter gate flush water valve control A/M station. The diverter gate flush valve will open when the diverter gate is closed and close when the diverter gate is open. ## 7.8. SCREW FEEDER/CAKE PISTON PUMP (BY OTHERS) (15MPMP500/520/540) Operation of the Screw Feeder and Cake Piston Pump will be by SCADA. ## **OPERATOR INTERFACE GRAPHIC SCREENS** A total of sixty-two (62) OIT graphics will be created for the P1-101 Dewatering Centrifuge System project. These screens are shown in this description. The types of screens and their quantities are as follows: | Number of Screens | Screen Description | |-------------------|--| | 1 | OCSD Main Menu Screen | | 3 | Process Graphics Menu Screen | | 1 | Process Graphic Overview | | 3 | Process Graphic Screens (1 each, Centrifuge) | | 3 | Process Graphic Screens (1 each, Lube System) | | 1 | Centrifuge Select Menu Screen | | 3 | Centrifuge Detail | | 27 | Centrifuge Control Station Screens (9 ea. Cent.) | | 3 | Centrifuge Trend Screen (1 ea. Cent.) | | 3 | Runtime Screen (1 ea. Cent.) | | 1 | Alarm Screen | |---|---| | 9 | Configuration and Set Point Screens (3 ea. Cent.) | | 1 | System Menu Screen | | 1 | PLC Status Screen | | 1 | Help Screen | | 1 | Manufacturer's Information Screen | Note: For this submittal 1 of each screen for Centrifuge 1 is included. The remaining screens are duplicates from Centrifuge 1 and look the same. Dewatering Centrifuge OIT OCSD Main Menu Screen The screen below represents the OCSD Main Menu screen. From this screen the operator can navigate to: - Process Graphics Menu Screen for each Centrifuge. - System Menu Screen - Help Screen This screen allow selection of displaying Centrifuge 1, 2, or 3. ## **Dewatering Centrifuge Overview Screen** This screen displays the status of all 3 centrifuges. From this screen the operator can navigate to: - Process Graphics Menu Screen for each Centrifuge. - System Menu Screen - Help Screen # Process Graphics Menu Screen The screen below represents the menus screen which allows quick navigation to the screens identified on the screen list. ## Centrifuge Process Graphic Screen The Dewatering Graphics Screen is shows the centrifuge with data from the primary components. This example screen shows several conditions which could exist for the centrifuge, but would not necessarily exist simultaneously. The symbols for the screen are animated with standard District color codes to show their status (red = on, green = off, blue = out of service). # Lube Oil System Graphic The Oil Lube System Overview displays the oil lube pumps and the oil cooling water valves. The sample is shown below. ## Centrifuge Detail The centrifuge detail screen will display the current parameter readings of the centrifuge. A sample of this display is shown below. This detail screen displays the following: - Centrifuge Bearing Vibrations and Temperatures - Bowl Motor Winding and Bearing Temperatures - Scroll Motor Bearing Vibrations and Temperatures - Scroll Motor Discrete Alarms - Bowl Motor Discrete Alarms - Control Panel Alarms - Lube System Discrete Alarms - Centrifuge Discrete Alarms # Centrifuge Control Station Screens The centrifuge control stations screens allow operator control of the system. Nine (9) screens are represented below. This screen shows START/STOP/AUTO control of the bowl motor. The operations of these components are described in the component subsections of this memo. This screen shows START/STOP/AUTO control of the scroll motor. The operations of these components are described in the component subsections of this memo. This screen shows START/STOP control of the flush and shutdown mode. The operations of these components are described in the component subsections of this memo. This screen shows START/STOP control of clean in place (CIP) mode. The operations of these components are described in the component subsections of this memo. This screen shows OPEN/CLOSE/AUTO control of the flush water solenoid valves The operations of these components are described in the component subsections of this memo. This screen shows OPEN/CLOSE/AUTO control of the seal water solenoid valve. The operations of these components are described in the component subsections of this memo. # **Lube System Control Stations** This screen displays the control stations for the liquid side and solid side pumps associated with the centrifuge lube system. The operations of these components are described in the component subsections of this memo. This screen displays the control stations for the liquid side and solid side pumps associated with the centrifuge lube system. The operations of these components are described in the component subsections of this memo. ## Trend Screen This screen displays the trends centrifuge sludge flow, polymer flow, bowl speed and gear speed, and differential speed. ## Runtime Screen This screen displays the runtimes of the equipment along with status, mode, and alarm condition. For this system Duty (Lead/Lag conditions are not applicable). ## Alarm Screen Any alarms will appear on this display screen in either the unacknowledged or acknowledged window. The sample text shows format of the alarm conditions. See Appendix A for a list of possible alarms. ## Configuration and Set Point Screens This screen allows operator setpoint entry and in service and out of service selection of equipment. The set points with green background are configurable. And those with a brown background are hardcoded. In service or out of service are displayed by a check mark. # System Menu This system menu allows display of PLC status, and Manufacturer's information. ## **PLC Status Screen** ## Manufacturer's Information ## Help Screen ## APPENDIX A - ALARM CONDITIONS AND SHUTDOWNS | Alarm condition | Alert | Feed
Off | | | Emergency
Shutdown | |--|-------|-------------|----------|----------|-----------------------| | Liquids Side Bearing Temp – HI | | ✓ | | | | | Liquids Side Bearing Temp – HIHI | | | ✓ | | | | Liquids Side Fixed Bearing Temp – HI | | ✓ | | | | | Liquids Side Fixed Bearing Temp – HIHI | | | ✓ | | | | Solids Side Bearing Temp – HI | | ✓ | | | | | Solids Side Bearing Temp – HIHI | | | ✓ | | | | Bowl Motor Shaft End Bearing Temp – HI | | ✓ (| | | | | Bowl Motor Shaft End Bearing Temp – HIHI | | | ✓ | | | | Bowl Motor Fan End Bearing Temp – HI | | ✓ | | | | | Bowl Motor Fan End Bearing Temp – HIHI | | | ✓ | | | | Scroll Motor Shaft End Bearing Temp – HI | | * | | | | | Scroll Motor Shaft End Bearing Temp HIHI | | | | √ | | | Scroll Motor Fan End Bearing Temp – HI | | 1 | | | | | Scroll Motor Fan End Bearing Temp – HIHI | | | | ✓ | | | Bowl Motor Winding Temp – HI (6 x RTD's) | | ✓ | | | | | Bowl Motor Winding Temp – HIHI (6 x RTD's) | | | ✓ | | | | Scroll Motor Winding Temp HI | | | | ✓ | | | Bowl Speed HiHi | | | ✓ | | | | Bowl Speed Hi | | | | | ✓ | | Bowl Speed Low | | | | ✓ | | | Differential Speed Low | | | | ✓ | | | Centrifuge CCP Emergency Stop | | | | | ✓ | | Centrifuge Station (near stairs) Emergency | | | | | | | Stop | | | | | ✓ | | Centrifuge Bowl CMCC Emergency Stop | | | | | ✓ | | Centrifuge Scroll CMCC Emergency Stop | | | | | ✓ | | Bowl Motor VFD Fault | | | ✓ | | | | Bowl Motor VFD Fail to Run | | | ✓ | | | | Scroll Motor VFD Fault | | | | ✓ | | | Scroll Motor VFD Fail to Run | | | | ✓ | | | Torque HI | | ✓ | | | | | Torque HIHI | | | | ✓ | | | Liquids Side Horizontal Vibration HI | | ✓ | | | | | Liquids Side Horizontal Vibration HIHI | | | ✓ | |
| | Liquids Side Vertical Vibration HI | | ✓ | | | | | Liquids Side Vertical Vibration HIHI | | | ✓ | | | | Solids Side Horizontal Vibration HI | | ✓ | | | | | Solids Side Horizontal Vibration HIHI | | | ✓ | | | | Solids Side Vertical Vibration HI | | ✓ | | | | | Solids Side Vertical Vibration HIHI | | | ✓ | | | | Scroll Motor Vibration HI | | ✓ | | | | | Scroll Motor Vibration HIHI | | | ✓ | | | | Liquids Side Lube Oil Pressure Low | | | ✓ | | | | Liquids Side A Lube Oil Flow Low | | | ✓ | | |--|--------------|-------------|----------|-----------------------| | Alarm condition | Alert | Feed
Off | | Emergency
Shutdown | | Liquids Side B Lube Oil Flow Low | | | ✓ | | | Liquids Side Lube Oil Cooling Flow Low | | | ✓ | | | Liquids Side Lube Oil Level Low | | | ✓ | | | Liquids Side Lube Oil Diff. Press High | | | ✓ | | | Liquids Side Lube Oil Water Sensor Fault | | | ✓ | | | Liquids Side Lube Oil Pump Motor Overload | | | ✓ | | | Liquids Side Lube Oil Pump Motor Fail to Run | | | ✓ | | | Solids Side Lube Oil Pressure Low | | | ✓ | | | Solids Side A Lube Oil Flow Low | | | ✓ | | | Solids Side B Lube Oil Flow Low | | | ✓ | | | Solids Side Lube Oil Cooling Flow Low | | | ✓ | | | Solids Side Lube Oil Level Low | | | ✓ | | | Solids Side Lube Oil Diff. Press High | | | ✓ | | | Solids Side Lube Oil Water Sensor Fault | | | ✓ | | | Solids Side Lube Oil Pump Motor Overload | | | ✓ | | | Solids Side Lube Oil Pump Motor Fail to Run | | | ✓ | | | Plant System Fail to Feed | ✓ | | | | | System Feed Control Station is Off | \checkmark | | | | | Flush Water Low Flow | | ✓ | | | | Seal Water Low Flow | | | ✓ | | | PNL FCP120 PS1 24VDC Trouble Alarm | ✓ | | | | | PNL FCP120 PS2 24VDC Trouble Alarm | ✓ | | | | | | | | | | # 4 APPENDIX B – Analog Scaling Scaling methods: All analog values will be scaled from the raw data to their respective Engineering units. | | ANALOG | S INPUTS | | |------------------------------------|-------------|--------------------|----------------------------------| | DESCRIPTION | INPUT TYPE | RANGE (Eng. Units) | ALARM SET POINTS | | Bowl Motor Amps (Note 1) | 4-20 mA | 0 ~ 931.5 Amps | N/A | | Bowl Motor Volts (Note 1) | 4-20 mA | 0 ~ 480 Volts | N/A | | Bowl Motor Frequency (Note 1) | 4-20 mA | 0 ~ 60 Hz | N/A | | Scroll Motor Amps (Note 1) | 4-20 mA | 0 ~ 131.8 Amps | N/A | | Scroll Motor Volts (Note 1) | 4-20 mA | 0 ~ 480 Volts | N/A | | Scroll Motor Torque (Note 1) | 4-20 mA | 0 ~ 150% | 80% = HI
90% = HHI | | Scroll Motor Frequency (Note 1) | 4-20 mA | 0 ~ 60 Hz | N/A | | Centrifuge Bearing
Temperatures | RTD, PT 100 | 0 ~ 1562°F | 212°F = HI
230°F = HHI | | Motor Bearing Temperatures | RTD, PT 100 | 0 ~ 1562°F | 225°F = HI
235°F = HHI | | Bowl Motor Winding
Temperatures | RTD, PT 100 | 0 ~ 1562°F | 293°F = HI
311°F = HHI | | Bowl Speed | 4-20 mA | 0 ~ 3000 RPM | 2200 RPM | | Cyclo Gear Input Speed | 4-20 mA | 0 ~ 3000 RPM | N/A | | Centrifuge Vibration | 4-20 mA | 0 ~ 2.0 in/s (RMS) | 0.8 in/s = HI
1.0 in/s = HIHI | | Sludge Flow Rate | 4-20 mA | 0 ~ 2000 GPM | N/A | | Polymer Flow Rate | 4-20 mA | 0 ~ 50 GPM | N/A | #### Notes: 1. These signals are also monitored by SCADA via the Ethernet network. | | ANALOG OUTPUTS | | |-------------------------------|----------------|---------------------------| | DESCRIPTION | OUTPUT TYPE | RANGE (Engineering Units) | | Bowl Motor VFD Speed Adjust | 4-20 mA | 0 ~ 100% | | Scroll Motor VFD Speed Adjust | 4-20 mA | 0 ~ 100% | #### **APPENDIX C - TIMERS / COUNTERS AND SETPOINTS** ## **SCROLL CONTROL OPERATING SETPOINTS** These parameters are commonly modified to fine tune the process and are not password protected #### • Control Begin Control Begin is the torque setpoint (%) at which the SJM control starts to operate. Above the Control Begin threshold, a rising torque results in a differential speed increase and a reduced torque in a differential speed decrease. ## • Basic Differential Speed The basic differential speed is the differential speed at which the decanter works below the Control begin threshold. ## • Control Gradient Slope of characteristic curve after exceeding the Control Begin threshold. The greater the control gradation value, the greater the differential speed change per torque unit and the more the control systems tends to override. The differential speed starts oscillating. ## • Delay Time The delay time adjusts the reaction time of the decanter. A long delay time results in a slow decanter reaction. A short delay time results in a fast decanter reaction. ## **PROCESS PARAMETERS** These are parameters that users change depending on the type of sludge being processed. Some parameters in this group are password protected or secured. ## • Flush Water Off Bowl Speed (secured) This is the bowl speed value at which the flush water will turn off during shutdown. ## • Flush Water On Bowl Speed (secured) This is the bowl speed value at which the flush water will turn on during start-up. ## CIP Cycles This is the number of cycles required to clean the centrifuge. ## • CIP Low Bowl Speed (secured) During the CIP sequence, this is the bowl speed at which the wall of liquid inside of the bowl will collapse. #### • CIP High Bowl Speed (secured) During the CIP sequence, this is the bowl speed at which the bowl will accelerate to for a period of time, with flush water turned on, before costing down to the CIP Low Bowl speed. 3/23/2020 - Rev. 6 #### **PROCESS TIMERS** These timers control the starting and stopping of the equipment and will not usually need modification once commissioning is complete. Most of these parameters are either hard-coded or password protected. ## • Torque / Open Diverter Gate This is the torque value at which the diverter gate will open. When the machine torque is greater than this set point for a preset time period, the diverter gate will open. ## • Torque / Open Diverter Gate delay This is the time the torque must be above the set point before the diverter gate will open. ## • Torque / Close Diverter Gate This is the torque value at which the diverter gate will close. When the machine torque is less than this set point for a preset time period, the diverter gate will close. ## • Torque / Close Diverter Gate delay This is the time the torque must be above the set point before the diverter gate will close ## • Bowl Motor Start-Up Timer This is the time that the main bowl motor is given to ramp up to operating speed. If the bowl speed is within the operating limits when this timer expires, then the centrifuge is ready to process sludge. If the bowl speed is above or below operating limits when this timer expires, then an alarm is issued and the controlled shutdown sequence is initiated ## • Flush Water – Start-up This is the time that the flush water cycle is active during start-up ## • Flush Water – Torque High This is the time that the flush water cycle is active, when triggered by a Torque High Alarm. #### • Flush Water – Vibration High This is the time that the flush water cycle is active, when triggered by a Vibration High Alarm. ## • Idle Mode - Flush Interval This is the time that centrifuge will remain in idle mode before the flush water valve will open ## • Idle Mode - Flush Duration This is the time duration that valve will open during an idle mode flush #### • Pre-Lube Timer This is the time duration that the lube oil system is required to run prior to starting the centrifuge. ## • Post-Lube Timer This is the time duration that the lube oil system is required to run after the centrifuge has shut down. 3/23/2020 - Rev. 6 #### **MACHINE CONFIGURATION PARAMETERS** These parameters are set during commissioning and should not be modified except by qualified personnel. These parameters are password protected. #### • Primary Gear Factor This is the gearbox ratio for the primary gear. ## • Secondary Gear Factor This is the gearbox ratio for the secondary gear. #### • Minimum Differential Speed This is the minimum differential speed for centrifuge operation. If the differential speed is below this setpoint, then a differential speed low alarm is issued. #### • Maximum Differential Speed This is the maximum differential speed for centrifuge operation. ## • Torque Suppression Value This is a bias value for the torque that is determined by operating the centrifuge with no load at the highest differential speed. This value is used to determine the true zero point of the torque with no load on the machine. ## • Bowl Minimum Operating Speed This is the minimum bowl speed at which the centrifuge is designed to operate. #### Bowl Maximum Operating Speed This is the maximum bowl speed at which the centrifuge is designed to operate. ## • Bowl at Speed (Ready for Feed) This is the operating bowl speed for processing. #### Restart Interlock During a shutdown cycle, the centrifuge can be restarted when the bowl speed drops below this setpoint. #### • Torque High This is the setpoint of the torque high alarm. ## • Torque High-High This is the setpoint of the torque high-high alarm. #### • Vibration High This is the setpoint of the vibration high alarm. ## • Vibration High-High This is the setpoint of the vibration high-high alarm. #### • Bearing Temperature High This is the setpoint of the bearing temperature high alarms. #### • Bearing Temperature High-High This is the setpoint of the bearing temperature high-high alarms. ## 4 APPENDIX D - PRESETS AND SECURITY SETUP | Description | Preset | Units | Range | |---|--------|---------|---------| | Scroll Operation | | | | | Control Begin | 30 | % | 0-100 | | Basic Differential Speed | 5 | Rpm | 1.0-9.8 | | Gradient | 13 | % | 0-100 | | Delay Time | 5 | seconds | 0-100 | | Process Parameters | | | | | Torque/diverter gate close | 15 | % | 0 - 100 | | Torque/diverter gate
open | 25 | % | 0 - 100 | | Flush Water Off Bowl Speed | 200 | Rpm | 0-500 | | Flush Water On Start-up Bowl Speed | 500 | Rpm | 0-1850 | | Flush Water Off Torque (Flush & Shutdown) | 15 | % | 0-100 | | CIP Cycles | 3 | - | 0-99 | | CIP Bowl Speed High | 500 | Rpm | 0-1850 | | CIP Bowl Speed Low | 100 | Rpm | 0-1850 | + | + | | | | | | | | | | | | | 4 APPENDIX E – CENTRIFUGE FORMULAS AND CALCULATIONS Enter calculations required | | | | | | | | INPUT | REAL I/O | | OUT | PUT | I | PROCES | sslo | CONFIG | PUM | ıps I | PUMP# | PUMP#/ | PUM | /IP/VLV | TRI | END | RU | NTIME | | | |----------|-----------|---------------|------------------|-----------------|------------------------------|------------------------|------------------|----------------------------|----------|--------------------------------------|----------|-----|-------------------|-------------------------------|--------|---------------|----------------|---|------------------------------------|-----|----------------|-----|-------------|-------|------------------|-----------|-----------| | | | | = NOT APPLICABLE | <u> </u> | | | FIELD | | LC | | | | OVERVIE | | | GROUI | | DETAIL | VLV A/M | | NING | | | | R SUM. | | | | ITEM | REGISTER | TAG | | CRIPTION | Range | ALARM SUMMARY 3% or ON | | G DROP-RACK-
SLOT-POINT | Panel ON | 50% or Ann. BLINK
100% or Ann. ON | 0% or ON | % | ON
r ALM Blink | 100% or ALM Solid
0% or ON | 0 0 | % or ON Blink | % of ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | ON
or ALM Blink
or ALM Solid | %(| 50% | % | 50%
100% | or ON | 50% or ALM Blink | | SIGN-OFF | | I I LIVI | KLOIOTLIK | 170 | DESC | JAII HON | rtarige | 4 0 | - Ω - | SEOT-I OINT | 0 1 | υ – | 0 4 | 2 - | (1) | - ° | ν τυ 4 | - 0 4 | 2 - | - Q Q | 0 0 - | . 0 | Ω - | | <u>υ –</u> | 1 | Ω + | GOWINEINI | 01014-011 | | 1 | 2 | 02001 | 55FU079_CLK | ROCKY PLC CLCK | WIDE CLK UPDATE | 3 | | | PLC BATTERY | FAILED | 4 | | | PLC MEMORY | PROTECT OFF | 5 | | 55FU079_MOD | PLC ALL MODS | NOT HEALTHY | 6 | 04004 | 55FU079_COM | PLC DROPS NOT | COMMUNICATING | 7 | 04011 | 55FU079_PRO | PLC HOT STNDBY | PROBLEM (HOT) | 8 | | 55FU079_B | PLC CNTRLLER B | PRIMARY (HOT) | 9 | 04013 | 55FU079_MIS | PLC CNTR LOGIC | MISMATCH (HOT) | 10 | 44001 | 55FU079_SCN | ROCKY PLC PROG | SCAN TIME | 0-999.9 MSEC | 11 | 44002 | 55FU079_DOW | ROCKY PLC CLCK | DAY OF WEEK | 0-7 DOW | 12 | 44003 | 55FU079_MON | ROCKY PLC CLCK | MONTH | 0-12 MONTH | 13 | | 55FU079_DAY | ROCKY PLC CLCK | DAY | 0-31 DAY | 14 | 44005 | 55FU079_YR | ROCKY PLC CLCK | YEAR | 0-99 YEAR | 15 | | 55FU079_HR | ROCKY PLC CLCK | HOUR | 0-24 HOUR | 16 | | 55FU079_MIN | ROCKY PLC CLCK | MINUTE | 0-60 MINUTE | 17 | 44008 | 55FU079_SEC | ROCKY PLC CLCK | SECOND | 0-60 SECOND | | | | | | | | | _ | | | | | | | | | | | | | | | 18 | 19 | | 55FLSH040 | WW FLOAT | HI LEVEL | | | | D03-R01-S03-P02 | 20 | | 55FLAH040 | WW FLOAT | HI LEVEL ALM | | | | D02-R01-S06-P10 | | | | | | _ | | | | | | | | | | | | | | | 21 | | 55FLSH040_ALA | WW FLOAT | HI LEVEL ALARM | | | | | | | | | | _ | | | | | | | | | | | | | | | 22 | | 55FLSH040_ALH | WW FLOAT | ALARM ACK HMI | | | | | | | | | | | | | _ | | | | | | | | | | | | 23 | 04023 | 55FLSH040_ALK | WW FLOAT | ALARM ACK | 24 | 20022 | EEEL ITO20 | WW CONIC 2 | LEVEL | 0.200 INCLIES | | | D00 D04 007 D04 | 25 | | 55FLIT038 | WW SONIC 2 | LEVEL
LEVEL | 0-300 INCHES
0-300 INCHES | | | D06-R01-S07-P04 | 26
27 | 44023 | 55FLIT038_LVL | WW SONIC 2 | LEVEL | 0-300 INCHES | 28 | სასკა | 55FLF038_ISH | WW SONIC 2 | INS HMI | 29 | | 55FLF038_ISM | WW SONIC 2 | INS MODE | 30 | | 55FLF038_OSH | WW SONIC 2 | OOS HMI | 31 | | 55FLF038_OSM | WW SONIC 2 | OOS MODE | 32 | , | | 1 | 33 | 10161 | 55FYS038B | WW SONIC 2 | XMTR TRBL | | | | D05-R01-S05-P01 | 34 | | 55FYS038B_ALA | WW SONIC 2 | XMTR TRBL ALM | | | | 22 1 12 1 200 1 31 | 35 | | 55FYS038B_ALH | WW SONIC 2 | ALARM ACK HMI | 36 | | 55FYS038B_ALK | WW SONIC 2 | ALARM ACK | 37 | | 55FYA038B | WW SONIC 2 | XMTR TRBL ALM | | | | D02-R01-S07-P03 | 38 | 39 | 02034 | 55FLE038J_S2H | WW SONIC 2 | HMI SELECT | 40 | 10003 | 55FHS038J | WW SONIC 2 | SELECT | | | | D02-R01-S03-P03 | 41 | 04043 | 55FLE038J_S2M | WW SONIC 2 | SELECTED | 42 | 00002 | 55FYL038J | WW SONIC 2 | SELECTED | | | | D02-R01-S04-P02 | 43 | INPUT | REAL I/O | | OUTPL | JT | PF | ROCESS | CC | ONFIG | PUMPS | PUMP # | # PU | JMP#/ | PUMF | P/VLV | TRE | END | RU | NTIME | | | |---------|----------|----------------|------------------|----------------|--------------|-----------------|--------------------------|------------------------------------|------------|-----------------|------------------|----------------|-----|---------------------------------------|---|----------------|-------------------------------|---------------------------------------|------|-------------|-----|-------------|----|---------------------------------------|---------|-----------| | | | | = NOT APPLICABLI | E | | FIELD | | LCF | P LO | CPA\FIE | LD OV | /ERVIEW | / | | GROUP A/N | И DETAIL | . VL | _V A/M | TUN | IING | | | OR | SUM. | 1 | | | ITEM | REGISTER | TAG | | CRIPTION | Range | 0% or ON
50% | DROP-RACK- | % or Panel ON
50% or Ann. BLINK | or Ann. ON | 0% or ON
50% | 100%
0% or ON | % or ALM Blink | NO | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | 3% or ON Blink | 100% or ALM Solid
3% or ON | 50% or ALM Blink
100% or ALM Solid | %0 | 50%
100% | %(| 50%
100% | ō | 50% or ALM Blink
100% or ALM Solid | COMMENT | SIGN-OFF | | TT EIVI | REGIOTER | 1710 | DE0 | OTTI TIOIV | runge | S (8) | - 0001-101111 | 0 4) | | (1) | +10 | (D) (E) | . 8 | () - | 0 4) + | - 0 4) | + 0 | Ø 4 | 0 . | 0 - | | 1) ← | 0 | () ← | COMMENT | 01014-011 | | 44 | 30002 | 55FLIT035 | WW SONIC 1 | LEVEL | 0-300 INCHES | | D04-R01-S05-P02 | 45 | | 55FLIT035_LVL | WW SONIC 1 | LEVEL | 0-300 INCHES | 46 | | _ | 47 | 02030 | 55FLF035_ISH | WW SONIC 1 | INS HMI | 48 | | 55FLF035_ISM | WW SONIC 1 | INS MODE | 49 | | 55FLF035_OSH | WW SONIC 1 | OOS HMI | 50 | | 55FLF035_OSM | WW SONIC 1 | OOS MODE | 51 | 52 | 10019 | 55FLSL035 | WW SONIC 1 | LO LEVEL | | | D03-R01-S03-P03 | 53 | | 55FLSL035_ALA | WW SONIC 1 | LO LEVEL ALARM | 54 | | 55FLSL035_ALH | WW SONIC 1 | ALARM ACK HMI | 55 | | 55FLSL035_ALK | WW SONIC 1 | ALARM ACK | 56 | | 55FLAL035 | WW SONIC 1 | LO LEVEL ALM | | | D02-R01-S06-P11 | 57 | 58 | 10065 | 55FLSMA035 | WW SONIC 1 P1 | START | | | D03-R01-S06-P01 | 59 | | 55FLSMA035_ALA | WW SONIC 1 P1 | START ALARM | 60 | | 55FLSMA035_ALH | WW SONIC 1 P1 | ALARM ACK HMI | 61 | | 55FLSMA035_ALK | WW SONIC 1 P1 | ALARM ACK | 62 | | 55FLSMB035 | WW SONIC 1 P2 | START | | | D03-R01-S06-P02 | 63 | | 55FLSMB035_ALA | WW SONIC 1 P2 | START ALARM | 64 | | 55FLSMB035_ALH | WW SONIC 1 P2 | ALARM ACK HMI | 65 | |
55FLSMB035_ALK | WW SONIC 1 P2 | ALARM ACK | 66 | | 55FLSMC035 | WW SONIC 1 P3 | START | | | D03-R01-S07-P01 | 67 | | 55FLSMC035_ALA | WW SONIC 1 P3 | START ALARM | 68 | | 55FLSMC035_ALH | WW SONIC 1 P3 | ALARM ACK HMI | 69 | | 55FLSMC035_ALK | WW SONIC 1 P3 | ALARM ACK | 70 | | 55FLSMD035 | WW SONIC 1 P4 | START | | | D03-R01-S07-P02 | 71 | 04030 | 55FLSMD035_ALA | WW SONIC 1 P4 | START ALARM | 72 | | 55FLSMD035_ALH | WW SONIC 1 P4 | ALARM ACK HMI | 73 | | | WW SONIC 1 P4 | ALARM ACK | 74 | 75 | 10017 | 55FYS035B | WW SONIC 1 | XMTR TRBL | | | D03-R01-S03-P01 | 76 | | 55FYS035B_ALA | WW SONIC 1 | XMTR TRBL ALM | 77 | 02027 | 55FYS035B_ALH | WW SONIC 1 | ALARM ACK HMI | 78 | | 55FYS035B_ALK | WW SONIC 1 | ALARM ACK | 79 | 00050 | 55FYA035B | WW SONIC 1 | XMTR TRBL ALM | | | D02-R01-S07-P02 | 80 | 81 | 02033 | 55FLE035J_S1H | WW SONIC 1 | HMI SELECT | 82 | 10002 | 55FHS035J | WW SONIC 1 | SELECT | | | D02-R01-S03-P02 | 83 | 04042 | 55FLE035J_S1M | WW SONIC 1 | SELECTED | 84 | 00001 | 55FYL035J | WW SONIC 1 | SELECTED | | | D02-R01-S04-P01 | 85 | 1 | | | INI | IPUT | REAL I/O | 0 | UTPUT | | PROC | ESS | CONFIG | ; P | UMPS | PU | MP# | PUMP#/ | I PUI | MP/VLV | TRE | ND I | RUN | ITIME | | | |----------|----------|------------------------------|------------------|-----------------------------|----------------|------------|------|--------------------------|---------------------------|-----------------------------|-----|------------------------------|--------------|------------------------------|----------|---------------------------------------|-------|---------------------------------------|---|-------|--------|------|------|-------|---------------------------------------|---------|----------| | | | | = NOT APPLICABLE | | | | IELD | TALTAL ITO | LCP | | | OVER | | 0011110 | | OUP A/M | | TAIL | VLV A/M | | JNING | 1111 | | | SUM. | | | | ITEM | REGISTER | TAG | | RIPTION | | AM SUMMARY | 50% | DROP-RACK-
SLOT-POINT | Panel ON
or Ann. BLINK | 100% or Ann. ON
0% or ON | 50% | 0% or ON
50% or ALM Blink | or ALM Solid | 0% or ON
50% or ALM Blink | LM Solid | 50% or ALM Blink
100% or ALM Solid | or ON | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | | 50% | %0 | 100% | or ON | 50% or ALM Blink
100% or ALM Solid | COMMENT | SIGN-OFF | 86 | | 55FLIT035_ACT | | LEVEL | 0-300 INCHES | 87 | | 55FLI034 | | LEVEL | 0-300 INCHES | | | 002-R01-S10-P01 | 88 | | 55FLI034D | | LEVEL | 0-300 INCHES | | | 004-R01-S09-P01 | 89 | | 55FLI034B | | LEVEL | 0-300 INCHES | | | 004-R01-S07-P03 | 90 | 40010 | 55FLI034A | WW ACT DRYWELL | LEVEL | 0-300 INCHES | _ | D | 004-R01-S08-P02 | 91 | 40004 | 5551 7005 110 | NADAL A OT | 1010114 057 | 0 000 11101150 | _ | 92 | | 55FLT035_LLS | | LOLO LVL SET | 0-300 INCHES | | | | | | | | | +++ | | | | | | | | | | | | | | | 93 | | 55FLT035_LLP | WW ACT
WW ACT | LOLO LVL SP
LOLO LVL ALM | 0-300 INCHES | 94 | | 55FLT035_LLA | | LOLO LVL ACKHMI | 95
96 | | 55FLT035_LLH
55FLT035_LLK | WW ACT
WW ACT | LOLO LVL ACKHMI | 97 | | 55FLALL034 | WW ACT | LOLO LEVEL ALM | | | | 000 D04 C0C D00 | 98 | 00040 | JOI LALLUS4 | WW ACT | LOLO LEVEL ALIVI | | _ | U | 002-R01-S06-P08 | 99 | 42023 | 55FLT035_LS | WW ACT | LO LVL SET | 0-300 INCHES | 100 | | 55FLT035_LP | WW ACT | LO LVL SET | 0-300 INCHES | | | | | | | | | | 4 | | | | | | | | | | | | | | 101 | | 55FLT035_LA | | LO LVL SF | 0-300 INCLIES | 102 | | 55FLT035_LH | | LO LVL ACKHMI | | | | | | | | | | | | | | | | | | | + | | | | | | 103 | | 55FLT035_LK | WW ACT | LO LVL ALMACK | | | | | | | | | | | | | | | | _ | | | + | | | | | | 104 | | 55FLAL034 | WW ACT | LO LEVEL ALM | | | D | 002-R01-S06-P07 | 105 | 00000 | OOI EALOOT | WW AOT | LO LL V LL /\Livi | | | D | 02-N01-300-F01 | 106 | 42022 | 55FLT035_HS | WW ACT | HI LVL SET | 0-300 INCHES | 107 | | 55FLT035_HP | WW ACT | HI LVL SP | 0-300 INCHES | 108 | | 55FLT035_HA | WW ACT | HI LVL ALM | 0 000 11101120 | 109 | | 55FLT035_HH | WW ACT | HI LVL ACKHMI | 110 | | 55FLT035_HK | WW ACT | HI LVL ALMACK | 111 | | 55FLAH034 | WW ACT | HI LEVEL ALM | | | D | 002-R01-S06-P06 | 112 | 113 | 42021 | 55FLT035_HHS | WW ACT | HIHI LVL SET | 0-300 INCHES | 114 | | 55FLT035_HHP | WW ACT | HIHI LVL SP | 0-300 INCHES | | | | | | | | | ++ | | | | | | | | | | | | | | | 115 | | 55FLT035_HHA | WW ACT | HIHI LVL ALM | 116 | | 55FLT035_HHH | WW ACT | HIHI LVL ACKHMI | 117 | | 55FLT035_HHK | WW ACT | HIHI LVL ALMACK | 118 | | 55FLAHH034 | WW ACT | HIHI LEVEL ALM | | | D | 002-R01-S06-P05 | 119 | 120 | 04054 | 55FLT035_COA | WW ACT | COMMON ALARM | 121 | | 55FLT035_COK | WW ACT | COMMON ALM ACK | 122 | 123 | 10004 | 55FHS034J | WW ACT LCP | LVL SETPT UP | | | D | 002-R01-S03-P04 | 124 | 10005 | 55FHS034K | WW ACT LCP | LVL SETPT DOWN | | | | 002-R01-S03-P05 | 125 | 40002 | 55FLI034C | WW ACT LCP | LEVEL SETPT | 0-300 INCHES | | D | 002-R01-S10-P02 | 126 | 127 | | 55FLDSH035_ACK | WW ACT | ALARM ACK | 128 | | | WW ACT | ALARM ACK HMI | 129 | 04044 | 55FLDSH035_ALM | WW ACT | DEVIATION ALARM | 130 | INPUT | REAL I/O | OUTPUT | PROCESS | CONFIG | PUMPS | PUMP# P | UMP#/ | PUMP/VLV | TREND | RL | JNTIME | | | |------------|----------|----------------------------|------------------|---------------------------|-----------------|-------|-----------------|--|----------------------------|-----------------------------|---|---|---------|----------|-----------|-------------|--------|---------|----------| | | | | = NOT APPLICABLE | | | FIELD | | LCP LCPA | NFIELD OVERVIEW | V | GROUP A/I | M DETAIL V | 'LV A/M | TUNING | | OI | R SUM. | | | | | | | | | ARM SI IMMARY | NO I | S DROP-RACK- | or Ann. BLINK
% or Ann. ON
or ON | ON
r ALM Blink | or ON or ON or OALM Blink | 100% or ALM Solid 0% or ON 50% or ALM Blink | ON ON ON ALM E | 0 % | . % | % | 0%
or ON | 0 0 | | | | ITEM | REGISTER | TAG | DESC | RIPTION | Range a | 50% 0 | SLOT-POINT | 0%
100
0% | 100%
0% c
50%
50% | 20% | 2 % 6 9 | 0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 50% | 50% | %0
20% | 100 | 50% | COMMENT | SIGN-OFF | | 461 | | | D. 11.45 | 222111 | | | | | | | | | | | | | | | | | 131 | | 55FPMP100_OSH | PUMP 1 | OOS HMI | | | | | | | | | | | - | | | | | | 132 | | 55FPMP100_OSM | PUMP 1 | OOS MODE | | | | | | | | | | | - | | | | | | 133 | | 55FPMP100_ISH | PUMP 1 | INS HMI | | | | | | | | | | | | | | | | | 134
135 | 04111 | 55FPMP100_ISM | PUMP 1 | INS MODE | | | | | | | | | | | - | | | | | | 136 | 02060 | 55FPMP100_ONH | PUMP 1 | ON HMI | | | | | | | | | | | - | | | | | | 137 | | 55FPMP100_ONM | PUMP 1 | ON MODE | | | | | | | | | | | - | | | | | | 138 | | 55FPMP100_OFH | PUMP 1 | OFF HMI | | | | | | | | | | | | | | | | | 139 | | 55FPMP100_OFM | PUMP 1 | OFF MODE | | | | | | | | | | | | | | | | | 140 | | 55FPMP100_AUH | PUMP 1 | AUTO HMI | | | | | | | | | | | | | | | | | 141 | | 55FPMP100_AUM | PUMP 1 | AUTO MODE | | | | | | | | | | | | | | | | | 142 | 000 | | | 7.0.0022 | | | | | | | | | | | | | | | | | 143 | 10034 | 55FHS100B | PUMP 1 | REMOTE
 | | D03-R01-S04-P02 | | | | | | | | | | | | | | 144 | | 55FHS100J | PUMP 1 | HAND | | | D03-R01-S04-P03 | | | | | | | | | | | | | | 145 | | 55FPMP100_HND | PUMP 1 | HAND | | | | | | | | | | | | | | | | | 146 | | _ | | | | | | | | | | | | | | | | | | | 147 | 04105 | 55FPMP100_DIS | PUMP 1 | DISABLE MODE | | | | | | | | | | | | | | | | | 148 | | 55FPMP100_WAT | PUMP 1 | WAIT | | | | | | | | | | | | | | | | | 149 | 150 | 04112 | 55FPMP100_ON | PUMP 1 | ON | | | | | | | | | | | | | | | | | 151 | 00007 | 55FYL100L | PUMP 1 | ON | | | D02-R01-S04-P07 | | | | | | | | | | | | | | 152 | 00086 | 55FYL100P | PUMP 1 LCPA | ON | | | D03-R01-S10-P06 | | | | | | | | | | | | | | 153 | 154 | | 55FPMP100_MOD | PUMP 1 | MODE DISPLAY | 0-4095 MODE | | | | | | | | | | | | | | | | 155 | | 55FPMP100_SYM | PUMP 1 | SYMBOL DISPLAY | 0-4095 SYMBOL | | | | | | | | | | | | | | | | 156 | 44048 | 55FPB100_DUT | PUMP 1 | DUTY DISPLAY | 0-4095 DUTY | | | | | | | | | | | | | | | | 157 | 158 | | 55FPMP100_FAA | PUMP 1 | FAIL ALARM | | | | | | | | | | | | | | | | | 159 | | 55FPMP100_FAH | PUMP 1 | FAIL ACK HMI | | | | | | | | | | | | | | | | | 160 | 04118 | 55FPMP100_FAK | PUMP 1 | FAIL ALM ACK | | | | | | | | | | | - | | | | | | 161 | 40000 | EEEVO400M | DUMD 4 | DDOTECT ON | | | D00 D04 004 D0 | | | | | | | | | | | | | | 162
163 | | 55FYS100M
55FYS100M_ALA | PUMP 1
PUMP 1 | PROTECT ON PROTECT ON ALM | | | D03-R01-S04-P01 | | | | | | | | | | | | | | 164 | | 55FYS100M_ALA | PUMP 1 | ALARM ACK HMI | | | | | | | | | | | | | | | | | 165 | | 55FYS100M_ALK | PUMP 1 | ALARM ACK | | | | | | | | | | | | | | | | | 166 | 5-007 | 33. 13.133WI_/LEK | . 300 | | | | | | | | | | | | | | | | | | 167 | 04119 | 55FPMP100_COA | PUMP 1 | COMMON ALARM | | | | | | | | | | | | | | | | | 168 | | 55FPMP100_COK | PUMP 1 | COMMON ALM ACK | | | | | | | | | | | | | | | | | 169 | | 55FYA100B | PUMP 1 | TROUBLE ALM | | | D02-R01-S05-P03 | | | | | | | | | | | | | | 170 | . , | | | | | | 2. 230 . 03 | | | | | | | | | | | | | | 171 | 02074 | 55FPMP100_ALR | PUMP 1 | ALARM RESET HMI | | | | | | | | | | | | | | | | | 172 | | 55FPMP100H | PUMP 1 | PLC RESET | | | D04-R01-S03-P03 | | | | | | | | | | | | | | 173 | 174 | 44061 | 55FPMP100_RTC | PUMP 1 | RUNTME CURR DAY | 0-999.9 HOURS | | | | | | | | | | | | | | | | 175 | | 55FPMP100_RTP | PUMP 1 | RUNTME PREV DAY | 0-999.9 HOURS | | | | | | | | | | | | | | | | 176 | 44059 | 55FPMP100_RTM | PUMP 1 | RUNTME CUMM MSD | 0-9999 HRS x100 | | | | | | | | | | | | | | | | 177 | 44060 | 55FPMP100_RTL | PUMP 1 | | 0-999.9 HOURS | | | | | | | | | | | | | | | | 178 | 02076 | 55FPMP100_RTR | PUMP 1 | RUNTIME RESET | | | | | | | | | | | | | | | | | 179 | T | | | | | | II. | NPUT | REAL I/O | | OUTPU | | PROCESS | | NFIG | PUM | | PUMP | | PUMP#/ | | MP/VLV | TR | END | | NTIME | | | |------|----------|---------------|------------------|-----------------|---------------|---------------------------|------|--------------------------|-------------------------------------|-----------------------------|----------|---|-----|---------------------------------------|----------|--------|------------------------------|-----|---|----|--------|----|-----|-----|---------------------------------------|---------|----------| | | | | = NOT APPLICABLE | ≣ | | F | IELD | | LCF | | PA\FIEL[| OVERVIEW | 1 | | GROU | IP A/M | DETA | AL. | VLV A/M | TL | JNING | | | OR | SUM. | | | | ITEM | REGISTER | TAG | DESC | CRIPTION | | ALARM SUMMARY
0% or ON | 50% | DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK | 100% or Ann. ON
0% or ON | 。 % | 0% or ON
50% or ALM Blink
100% or ALM Solid | N N | 50% or ALM Blink
100% or ALM Solid | 0% or ON | or ALM | 0% or ON
50% or ALM Blink | | 0% or ON
50% or ALM Blink
100% or ALM Solid | | 50% | %0 | 50% | 1 2 | 50% or ALM Blink
100% or ALM Solid | COMMENT | SIGN-OFF | 180 | 10038 | 55FYS100A | PUMP 1 VS | READY | | | | D03-R01-S04-P06 | 181 | 04115 | 55FYS100A_RDY | PUMP 1 VS | READY | 182 | 10037 | 55FYS100 | PUMP 1 VS | ON | | | | D03-R01-S04-P05 | 183 | 184 | 30001 | 55FST100 | PUMP 1 VS | SPEED | 0-100 PERCENT | | | D04-R01-S05-P01 | 185 | 44056 | 55FPMP100_SPD | PUMP 1 VS | SPEED | 0-100 PERCENT | 186 | 44093 | 55FST100_RPM | PUMP 1 | SPEED | 0-1188 RPM | 187 | 188 | 40005 | 55FSC100 | PUMP 1 VS | SPEED | 0-100 PERCENT | | | D04-R01-S07-P01 | 189 | 190 | | 55FHS100K | PUMP 1 VS | SELECT | | | | D03-R01-S04-P04 | 191 | 04114 | 55FPMP100_VSS | PUMP 1 VS | SELECTED | 192 | 193 | 42042 | 55FPMP100_SRS | PUMP 1 VS | SPEED RAMP SET | 0.1-100 RAMP | 194 | 44055 | 55FPMP100_SRP | PUMP 1 VS | SPEED RAMP SP | 0.1-100 RAMP | 195 | 196 | 00097 | 55FPMP100 | PUMP 1 VS | RUN | | | | D04-R01-S03-P01 | 197 | 198 | | 55FPA100_AAH | PUMP 1 | A/M AUTO HMI | 199 | | 55FPA100_AAM | PUMP 1 | A/M AUTO MODE | 200 | | 55FPA100_AMH | PUMP 1 | A/M MANUAL HMI | 201 | 04104 | 55FPA100_AMM | PUMP 1 | A/M MANUAL MODE | 202 | 203 | | 55FPA100_AMS | PUMP 1 | A/M MAN SPD SET | 0-100 PERCENT | 204 | | 55FPA100_AMP | PUMP 1 | A/M SPEED SP | 0-100 PERCENT | | | | | | | | | | | 4 | | | \perp | | | | | | | | | | 205 | 44054 | 55FPA100_AMB | PUMP 1 | A/M SPEED BAR | 0-100 PERCENT | 206 | 207 | | 55FYS100B | PUMP 1 VS | TROUBLE | | | | D03-R01-S04-P07 | 208 | | 55FYS100B_ALA | PUMP 1 VS | TROUBLE ALARM | 209 | | 55FYS100B_ALH | PUMP 1 VS | ALARM ACK HMI | 210 | 04063 | 55FYS100B_ALK | PUMP 1 VS | ALARM ACK | 211 | 212 | 10040 | 55FHS100H | PUMP 1 VS | RESET | | | | D03-R01-S04-P08 | 213 | 214 | | 55FHS100L | PUMP 1 VS LCPA | START | | | | D03-R01-S08-P08 | 215 | 10105 | 55FHS100M | PUMP 1 VS LCPA | STOP | | | | D03-R01-S08-P09 | П | INPUT | REAL I/O | OU | ITPUT | Р | ROCESS | СО | NFIG | PUN | MPS | PUMF | P# | PUMP#/ | PUMP/V | LV | TREN | D | RUNTI | ME | | | |--------|--------------------|---------------------|----------------|-----------------|-------|---------------|--------------|-----------------|--------------------------|----------|--------|----------------|----|---------------------------------------|------|---------------------------------------|------------------------------|-------------------|---|--------|-----|------|---|--------------|----------------|-----------|-----------| | | | | = NOT APPLICAB | BLE | | | FIELD | | LCP | LCPA\FI | IELD O | VERVIEW | ' | | GROU | JP A/M | DETA | AIL | VLV A/M | TUNING | G | | | OR SU | JM. | | | | | | | | | | ALARM SUMMARY | NO NO | DROP-RACK- | Panel ON
r Ann. BLINK | NO | % | or ALM Blink | | 50% or ALM Blink
100% or ALM Solid | | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | 100% or ALM Solid | or ON
6 or ALM Blink
9 or ALM Solid | | % | | % | or OLM Blink | 6 or ALM Solid | | | | ITEM | REGIS ¹ | TER TAG | DE | SCRIPTION | Range | | 0% or
50% | SLOT-POINT | 0% or
50% o | %02 | 9 9 | 50% | % | 30%
100 | %(| 50% | % 09 | 9 | 0% or
50% o | %09 | 9 % | % OS | 9 | 0% c | %001 | COMMENT | SIGN-OFF | | 112111 | 1120.0 | 1710 | | 1011 | runge | | <u> </u> | 020110111 | U W | <u> </u> | | , <u>4</u> , , | | 47 (| Ŭ, | 47 (| <u> </u> | | <u> </u> | U 47 | Ì | 7 47 | | <u>U 47</u> | | SSIMME.T. | 5.5.7 5.7 | | 217 | 44 | 4194 55FIIT100A_AMP | PUMP 1 VFD | AMPS PHASE A | 218 | | 4195 55FIIT100B_AMP | PUMP 1 VFD | AMPS PHASE B | 219 | | 4196 55FIIT100C_AMP | PUMP 1 VFD | AMPS PHASE C | 220 | 221 | 04 | 4342 55FISH100L_ALA | PUMP 1 VFD | OVERLD TRIP ALM | 222 | | 2190 55FISH100L_ALH | PUMP 1 VFD | ALARM ACK HMI | 223 | 04 | 4343 55FISH100L_ALK | PUMP 1 VFD | ALARM ACK | 224 | 225 | 04 | 4344
55FTSH100J_ALA | PUMP 1 VFD | INV OVRHEAT ALM | 226 | 02 | 2191 55FTSH100J_ALH | PUMP 1 VFD | ALARM ACK HMI | 227 | 04 | 4345 55FTSH100J_ALK | PUMP 1 VFD | ALARM ACK | 228 | 229 | 04 | 4346 55FESL100J_ALA | PUMP 1 VFD | LO DC VOLT ALM | 230 | 02 | 2192 55FESL100J_ALH | PUMP 1 VFD | ALARM ACK HMI | 231 | 04 | 4347 55FESL100J_ALK | PUMP 1 VFD | ALARM ACK | 232 | 233 | 04 | 4348 55FYS100Q_ALA | PUMP 1 VFD | HARDWAR FLT ALM | 234 | | 2193 55FYS100Q_ALH | PUMP 1 VFD | ALARM ACK HMI | 235 | 04 | 4349 55FYS100Q_ALK | PUMP 1 VFD | ALARM ACK | 236 | 237 | | 4350 55FESH100J_ALA | PUMP 1 VFD | HI DC VOLT ALM | 238 | | 2194 55FESH100J_ALH | PUMP 1 VFD | ALARM ACK HMI | 239 | 04 | 4351 55FESH100J_ALK | PUMP 1 VFD | ALARM ACK | 240 | 241 | 04 | 4383 55FPMP100_ALM | PUMP 1 VFD | COMM FAIL ALARM | 242 | 243 | | 0042 55FYS100L | PUMP 1 CS | READY | | | | D03-R01-S04-P10 | 244 | | 4116 55FYS100L_RDY | PUMP 1 CS | READY | 245 | | 0098 55FPMP100B | PUMP 1 CS | RUN | | | | D04-R01-S03-P02 | 246 | 10 | 0041 55FYS100J | PUMP 1 CS | ON | | | | D03-R01-S04-P09 | 247 | 248 | | 0043 55FISH100 | PUMP 1 CS | OVERLOAD | | | | D03-R01-S04-P11 | 249 | | 4064 55FISH100_ALA | PUMP 1 CS | OVERLOAD ALARM | 250 | | 2044 55FISH100_ALH | PUMP 1 CS | ALARM ACK HMI | 251 | 04 | 4065 55FISH100_ALK | PUMP 1 CS | ALARM ACK | 252 | T | T | | Τ | т г. | NPUT | REAL I/O | OUT | DIIT | PROCES | s C | ONFIG | PUMPS | PUMP# | PUMP : | # / D | JMP/VLV | TREND | ı I B | UNTIME | | | |------|----------|---------------|------------------|-----------------|---------------|------------------------|-------------|--------------------------|--|-----------------|------------------------------|-------------------|---------------------------------------|---|---|------------------------------|-------------------|-------------|------------|------------------|---------------------------------------|---------|----------| | | | | = NOT APPLICABLE | = | | | FIELD | REAL I/O | | | D OVERVIE | | JIVI IO | GROUP A/M | DETAIL | VLV A/ | | TUNING | IIILINE | | R SUM. | | | | | | | - NOT AFFLICABLE | _ | | | ILLD | | | LOFAIRIEL | D O V Z I K V I Z | 77 | - | 7.000 | 7 | 1217 | | | | — | 7. | | | | ITEM | REGISTER | TAG | DES | CRIPTION | Range | ALARM SUMMARY 0% or ON | 50%
100% | DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK
100% or Ann. ON | 0% or ON
50% | 0% or ON
50% or ALM Blink | 100% or ALM Solid | 50% or ALM Blink
100% or ALM Solic | 0% or ON
50% or ALM Blink
100% or ALM Solic | 0% or ON
50% or ALM Blink
100% or ALM Solic | 0% or ON
50% or ALM Blink | 100% or ALM Solic | 50%
100% | %09
20% | 100%
0% or ON | 50% or ALM Blink
100% or ALM Solic | COMMENT | SIGN-OFF | | 253 | 10044 | 55FMSH104 | PUMP 1 MTR | HI MOISTURE | | - | | D03-R01-S04-P12 | | | | | | | | | | | | | | | | | 254 | | 55FMSH104 ALA | PUMP 1 MTR | HI MOISTURE ALM | | | | D03-R01-504-P12 | | | | | | | | | | | | | | | | | 255 | | 55FMSH104_ALH | PUMP 1 MTR | ALARM ACK HMI | 256 | | 55FMSH104_ALK | PUMP 1 MTR | ALARM ACK | 257 | | 55FMAH104 | PUMP 1 MTR | HI MOISTURE ALM | | | | D02-R01-S05-P01 | | | | | | | | | | | | | | | | | 258 | | | | | | | | 2021101 2001 01 | | | | | | | | | | | | | | | | | 259 | 10045 | 55FTSH103 | PUMP 1 MTR | HI WIND TMP | | | | D03-R01-S04-P13 | | | | | | | | | | | | | | | | | 260 | 04058 | 55FTSH103_ALA | PUMP 1 MTR | HI WIND TMP ALM | 261 | 02041 | 55FTSH103_ALH | PUMP 1 MTR | ALARM ACK HMI | 262 | 04059 | 55FTSH103_ALK | PUMP 1 MTR | ALARM ACK | 263 | 00018 | 55FTAH103 | PUMP 1 MTR | HI WIND TMP ALM | | | | D02-R01-S05-P02 | | | | | | | | | | | | | | | | | 264 | 265 | 10046 | 55FZSC105 | PUMP 1 CHK VLV | CLOSED | | | | D03-R01-S04-P14 | | | | | | | | | | | | | | | | | 266 | 44097 | 55FZSC105_STA | PUMP 1 CHK VLV | STATUS DISPLAY | 0-4095 STATUS | 267 | 00011 | 55FZLO105 | PUMP 1 CHK VLV | OPENED | | | | D02-R01-S04-P11 | | | | | | | | | | | | | | | | | 268 | 00090 | 55FZLO105A | PUMP 1 CV LCPA | OPENED | | | | D03-R01-S10-P10 | | | | | | | | | | | | | | | | | 269 | 270 | | 55FZSC105_ALA | PUMP 1 CHK VLV | CLOSED ALARM | 271 | | 55FZSC105_ALH | PUMP 1 CHK VLV | ALARM ACK HMI | 272 | 04176 | 55FZSC105_ALK | PUMP 1 CHK VLV | ALARM ACK | 273 | INPUT | REAL I/O | OUT | TPUT | PROCESS | COI | NFIG | PUMPS | PUM | P# F | PUMP#/ | PUM | P/VLV | TRE | ND | RUN | TIME | | | |------------|----------|--------------------------------|------------------|--------------------|---------------|----------------|----------------------------|---|-----------|---------------------------------|-----|---------------------------------------|------------------------------|--------|-------------|---------------------------------------|-----|-------|-----------|-----|---------|---------------------------------------|---------|----------| | | | | = NOT APPLICABLE | | | FIELD | | LCP | LCPA\FIEL | OVERVIEW | ' | (| GROUP A/N | M DETA | AIL | VLV A/M | TUT | NING | | | OR S | SUM. | | | | | | | | | [| AKIM
% or O | % DROP-RACK-
SLOT-POINT | % or Panel ON
% or Ann. BLINK
0% or Ann. ON | NO | or ON or ALM Blink or ALM Solid | NO | 50% or ALM Blink
100% or ALM Solid | 1% or ON
50% or ALM Blink | | % or ALM Sc | 50% or ALM Blink
100% or ALM Solid | % | 50% |)%
50% | %0 | <u></u> | 50% or ALM Blink
100% or ALM Solid | | | | ITEM | REGISTER | TAG | DESC | RIPTION | Range | 2 6 5 | SLOT-POINT | 50 % | 20 % | 50% | %0 | 9 2 | 20,0 | 2 6 2 | 8 2 8 | 2 2 6 | 8 8 | 20, | 90 | 9 6 | %0 | 100 | COMMENT | SIGN-OFF | | 274 | 00000 | EEEDMD200 OOU | DUMD 2 | OOS HMI | PUMP 2 | 275 | | 55FPMP200_OSM | | OOS MODE | 276 | | 55FPMP200_ISH | PUMP 2 | INS HMI | 277 | 04129 | 55FPMP200_ISM | PUMP 2 | INS MODE | 278 | 02070 | EEEDMD200 ONU | DUMD 0 | ONLLIMI | 279 | | | | ON HMI | | | | | | | | | | | | | _ | | | | | | | | | 280 | | 55FPMP200_ONM | | ON MODE
OFF HMI | 281
282 | | 55FPMP200_OFH
55FPMP200_OFM | | OFF MODE | 283 | | 55FPMP200_AUH | | AUTO HMI | 284 | | 55FPMP200_AUM | PUMP 2 | AUTO MODE | 285 | 04127 | OOT I WII ZOU_AOW | JI JIVII Z | AO TO MODE | 286 | 10050 | 55FHS200B | PUMP 2 | REMOTE | | | D03-R01-S05-P02 | | | | | | | | | | | | | | | | | | | 287 | | 55FHS200J | PUMP 2 | HAND | | | D03-R01-S05-P02 | | | | | | | | | | | | | | | | | | | 288 | | 55FPMP200_HND | PUMP 2 | HAND | | | D03-101-303-F03 | | | | | | | | | | | | | | | | | | | 289 | 04131 | 3311 WII 200_11ND | I OWI Z | IIAND | 290 | 0/123 | 55FPMP200_DIS | PUMP 2 | DISABLE MODE | | | | | | | | | | | | | ++ | | | | | | | | | 291 | | | PUMP 2 | WAIT | 292 | 04124 | 3311 WI 200_WAT | I OWI Z | WALL | 293 | 04130 | 55FPMP200_ON | PUMP 2 | ON | 294 | | 55FYL200L | PUMP 2 | ON | | | D02-R01-S04-P08 | | | | | | | | | | | | | | | | | | | 295 | | 55FYL200P | | ON | | | D03-R01-S10-P07 | | | | | | | | | | | | | | | | | | | 296 | 00007 | 001 122001 | I OWN 2 LOTA | OIT | | | D03-101-510-101 | | | | | | | | | | | | | | | | | | | 297 | 44068 | 55FPMP200_MOD | PUMP 2 | MODE DISPLAY | 0-4095 MODE | 298 | | 55FPMP200_SYM | | SYMBOL DISPLAY | 0-4095 SYMBOL | 299 | | 55FPB200_DUT | | DUTY DISPLAY | 0-4095 DUTY | 300 | | | | - | 301 | 04135 |
55FPMP200_FAA | PUMP 2 | FAIL ALARM | 302 | | 55FPMP200_FAH | PUMP 2 | FAIL ACK HMI | 303 | 04136 | 55FPMP200_FAK | PUMP 2 | FAIL ALM ACK | 304 | | _ | 305 | 10049 | 55FYS200M | PUMP 2 | PROTECT ON | | | D03-R01-S05-P01 | | | | | | | | | | | | | | | | | | | 306 | 04066 | 55FYS200M_ALA | PUMP 2 | PROTECT ON ALM | 307 | | 55FYS200M_ALH | PUMP 2 | ALARM ACK HMI | 308 | 04067 | 55FYS200M_ALK | PUMP 2 | ALARM ACK | 309 | 310 | 04137 | 55FPMP200_COA | PUMP 2 | COMMON ALARM | 311 | 04138 | 55FPMP200_COK | PUMP 2 | COMMON ALM ACK | 312 | 00024 | 55FYA200B | PUMP 2 | TROUBLE ALM | | | D02-R01-S05-P08 | | | | | | | | | | | | | | | | | | | 313 | 314 | | _ | PUMP 2 | ALARM RESET HMI | 315 | 00107 | 55FPMP200H | PUMP 2 | PLC RESET | | | D04-R01-S04-P03 | | | | | | | | | | | | | | | | | | | 316 | 317 | | | PUMP 2 | RUNTME CURR DAY | 0-999.9 HOURS | 318 | | 55FPMP200_RTP | | RUNTME PREV DAY | 0-999.9 HOURS | 319 | | 55FPMP200_RTM | | RUNTME CUMM MSD | 320 | | 55FPMP200_RTL | | | 0-999.9 HOURS | 321 | 02086 | 55FPMP200_RTR | PUMP 2 | RUNTIME RESET | 322 | II | NPUT | REAL I/O | | OUTPUT | | PROCESS | CON | | PUMP | | PUMP# | PUMP# | | PUMP/VLV | TRI | END | | ITIME | | | |------|----------|------------------|------------------|-----------------|---------------|---------------------------|------|--------------------------|-------------------------------------|-----------------------------|---------|---|-------------------------------|----------|---------------|-----|------------------------------|---------|-------------------|-------------------|-----|-------------|----|---------------------------------------|---------|----------| | | | | = NOT APPLICABLE | <u> </u> | | F | IELD | | LCF | | A\FIELD | OVERVIEW | ' | | GROUP / | A/M | DETAIL | VLV A/N | M . | TUNING | | | OR | SUM. | | | | ITEM | REGISTER | TAG | DESC | CRIPTION | | ALARM SUMMARY
0% or ON | 50% | DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK | 100% or Ann. ON
0% or ON | | 0% or ON
50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or Al M Rlink | % or ALN | ON
r ALM B | 0 | 0% or ON
50% or ALM Blink | or O | 100% or ALM Solid | 0%
50%
100% | %0 | 50%
100% | ~ | 50% or ALM Blink
100% or ALM Solid | COMMENT | SIGN-OFF | 323 | 10054 | 55FYS200A | PUMP 2 VS | READY | | | | D03-R01-S05-P06 | 324 | 04133 | 55FYS200A_RDY | PUMP 2 VS | READY | 325 | 10053 | 55FYS200 | PUMP 2 VS | ON | | | | D03-R01-S05-P05 | 326 | 327 | 30010 | 55FST200 | PUMP 2 VS | SPEED | 0-100 PERCENT | | | D04-R01-S06-P01 | 328 | 44066 | 55FPMP200_SPD | PUMP 2 VS | SPEED | 0-100 PERCENT | 329 | 44094 | 55FST200_RPM | PUMP 2 | SPEED | 0-1188 RPM | 330 | 331 | 40009 | 55FSC200 | PUMP 2 VS | SPEED | 0-100 PERCENT | | | D04-R01-S08-P01 | 332 | 333 | 10052 | 55FHS200K | PUMP 2 VS | SELECT | | | | D03-R01-S05-P04 | 334 | 04132 | 55FPMP200_VSS | PUMP 2 VS | SELECTED | 335 | 336 | 42044 | 55FPMP200_SRS | PUMP 2 VS | SPEED RAMP SET | 0.1-100 RAMP | 337 | 44065 | 55FPMP200_SRP | PUMP 2 VS | SPEED RAMP SP | 0.1-100 RAMP | 338 | 339 | 00105 | 55FPMP200 | PUMP 2 VS | RUN | | | | D04-R01-S04-P01 | 340 | 341 | 02077 | 55FPA200_AAH | PUMP 2 | A/M AUTO HMI | 342 | | 55FPA200_AAM | PUMP 2 | A/M AUTO MODE | 343 | | 55FPA200_AMH | PUMP 2 | A/M MANUAL HMI | 344 | | 55FPA200_AMM | PUMP 2 | A/M MANUAL MODE | 345 | 346 | 42043 | 55FPA200_AMS | PUMP 2 | A/M MAN SPD SET | 0-100 PERCENT | 347 | | 55FPA200_AMP | PUMP 2 | A/M SPEED SP | 0-100 PERCENT | 348 | |
55FPA200_AMB | PUMP 2 | A/M SPEED BAR | 0-100 PERCENT | 349 | | _ | 350 | 10055 | 55FYS200B | PUMP 2 VS | TROUBLE | | | | D03-R01-S05-P07 | 351 | | 55FYS200B_ALA | PUMP 2 VS | TROUBLE ALARM | 352 | | 55FYS200B_ALH | PUMP 2 VS | ALARM ACK HMI | 353 | | 55FYS200B_ALK | PUMP 2 VS | ALARM ACK | 354 | - | _ | 355 | 10056 | 55FHS200H | PUMP 2 VS | RESET | | | | D03-R01-S05-P08 | 356 | 357 | 10106 | 55FHS200L | PUMP 2 VS LCPA | START | | | | D03-R01-S08-P10 | 358 | | 55FHS200M | PUMP 2 VS LCPA | STOP | | | | D03-R01-S08-P11 | 359 | | - **** | | - | | | | _ 30 1.01 000 1 11 | INPUT | REAL I/O | | OUTPU | Т | PRO | OCESS | CONFI | IG | PUMPS | PUMP # | # PI | UMP#/ | PUMI | P/VLV | TRE | END | RUN | IME | | | |------|----------|------------------|-----------------|-----------------|-------|---------------|--------|--------------------------|-------------------------------------|-------|--------------|----------|---------------------------------------|------------------------------|----|--|------------------------------|------------------------------|--------|------|-------------|-----|-------------|----------|-----|---------|----------| | | | | = NOT APPLICABI | ı F | | | FIELD | | LCF | | PA\FIEL[| _ | RVIEW | | | GROUP A/M | DETAIL | | LV A/M | | NING | | | OR S | | | | | | | | NOT ALL PEROADS | | | | I ILLD | | | | . 7 (() 1222 | | | | ъ | 70 | | 70 | 70 | | | | | | ъ | | | | ITEM | REGISTER | TAG | DE: | SCRIPTION | Range | ALARM SUMMARY | ., % | DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK | r An | | 0% or ON | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | % | 0% or ON
50% or ALM Blink
100% or ALM Soli | 0% or ON
50% or ALM Blink | 100% or ALM Soli
0% or ON | | %0 | 50%
100% | %0 | 50%
100% | 0% or ON | | COMMENT | SIGN-OFF | 360 | | 55FIIT200A_AMP | PUMP 2 VFD | AMPS PHASE A | 361 | 44198 | 55FIIT200B_AMP | PUMP 2 VFD | AMPS PHASE B | 362 | 44199 | 55FIIT200C_AMP | PUMP 2 VFD | AMPS PHASE C | 363 | 364 | 04352 | 55FISH200L_ALA | PUMP 2 VFD | OVERLD TRIP ALM | 365 | 02195 | 55FISH200L_ALH | PUMP 2 VFD | ALARM ACK HMI | 366 | 04353 | 55FISH200L_ALK | PUMP 2 VFD | ALARM ACK | 367 | 368 | 04354 | 55FTSH200J_ALA | PUMP 2 VFD | INV OVRHEAT ALM | 369 | 02196 | 55FTSH200J_ALH | PUMP 2 VFD | ALARM ACK HMI | 370 | 04355 | 55FTSH200J_ALK | PUMP 2 VFD | ALARM ACK | 371 | 372 | 04356 | 55FESL200J_ALA | PUMP 2 VFD | LO DC VOLT ALM | 373 | 02197 | 55FESL200J_ALH | PUMP 2 VFD | ALARM ACK HMI | 374 | 04357 | 55FESL200J_ALK | PUMP 2 VFD | ALARM ACK | 375 | 376 | 04358 | 55FYS200Q_ALA | PUMP 2 VFD | HARDWAR FLT ALM | 377 | | 55FYS200Q_ALH | PUMP 2 VFD | ALARM ACK HMI | 378 | | 55FYS200Q_ALK | PUMP 2 VFD | ALARM ACK | 379 | | _ | 380 | 04360 | 55FESH200J_ALA | PUMP 2 VFD | HI DC VOLT ALM | | | | | | | | | | | | | |
 | | | | | | | | | | 381 | | 55FESH200J_ALH | PUMP 2 VFD | ALARM ACK HMI | 382 | | 55FESH200J_ALK | PUMP 2 VFD | ALARM ACK | 383 | | _ | 384 | 04384 | 55FPMP200_ALM | PUMP 2 VFD | COMM FAIL ALARM | 385 | 386 | 10058 | 55FYS200L | PUMP 2 CS | READY | | | | D03-R01-S05-P10 | 387 | | 55FYS200L_RDY | PUMP 2 CS | READY | 388 | | 55FPMP200B | PUMP 2 CS | RUN | | | | D04-R01-S04-P02 | 389 | | 55FYS200J | PUMP 2 CS | ON | | | | D03-R01-S05-P09 | 390 | 10007 | | . 51111 2 555 | 511 | | | | 200-101-200-109 | 391 | 10059 | 55FISH200 | PUMP 2 CS | OVERLOAD | | | | D03-R01-S05-P11 | 392 | | 55FISH200_ALA | PUMP 2 CS | OVERLOAD ALARM | | | | 500-10 1-300-F 11 | 393 | | 55FISH200_ALH | PUMP 2 CS | ALARM ACK HMI | 394 | 04075 | 55FISH200_ALK | PUMP 2 CS | ALARM ACK | 395 | 04075 | 001 101 1200_ALK | J. JIVII 2 03 | ALAKIVI ACK | 393 | I | T | | T | т . | NPUT | REAL I/O | | OUTPUT | | PROCES | SS (| CONFIG | PUMPS | PUMP# | PUMP : | #/ P | UMP/VLV | TRE | ND | RUNTIME | | | |------------|----------|--------------------------------|--------------------------|--------------------------------|---------------|---------------------------|-------|--------------------------|-------------------------------------|-----------------------------|---------|------------------------------|-------------------|---------------------------------------|---|---|------------------------------|-------------------|-------------|-----|-------------|---|---------|----------| | | | | = NOT APPLICABLE | E | | | FIELD | | LCP | LCP. | A\FIELD | OVERVIE | | | GROUP A/M | DETAIL | VLV A/ | | TUNING | | | OR SUM. | | | | ITEM | REGISTER | TAG | | CRIPTION | Range | ALARM SUMMARY
0% or ON | | DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK | 100% or Ann. ON
0% or ON | 50% | 0% or ON
50% or ALM Blink | 100% or ALM Solid | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | 100% or ALM Solid | 50%
100% | %0 | 50%
100% | 0% or ON
50% or ALM Blink
100% or ALM Solid | COMMENT | SIGN-OFF | | 206 | 40000 | EEENOLIOO 4 | DUMP O MED | HI MOISTURE | | | | D00 D04 005 D40 | | | | | | | | | | | | | | | | | | 396
397 | | 55FMSH204 | PUMP 2 MTR
PUMP 2 MTR | HI MOISTURE
HI MOISTURE ALM | | | | D03-R01-S05-P12 | | | | | | | | | | | | | | | | | | 398 | | 55FMSH204_ALA
55FMSH204 ALH | PUMP 2 MTR | ALARM ACK HMI | 399 | | 55FMSH204_ALK | PUMP 2 MTR | ALARM ACK | 400 | | 55FMAH204 | PUMP 2 MTR | HI MOISTURE ALM | | | | D02-R01-S05-P06 | | | | | | | | | | | | | | | | | | 401 | 00022 | 001 W/W 1204 | TOWN ZWITK | TH WOIOTONE ALW | | | | D02-101-303-1 00 | | | | | | | | | | | | | | | | | | 402 | 10061 | 55FTSH203 | PUMP 2 MTR | HI WIND TMP | | | | D03-R01-S05-P13 | | | | | | | | | | | | | | | | | | 403 | | 55FTSH203 ALA | PUMP 2 MTR | HI WIND TMP ALM | | | | 200 101 0001 10 | | | | | | | | | | | | | | | | | | 404 | | 55FTSH203_ALH | PUMP 2 MTR | ALARM ACK HMI | 405 | | 55FTSH203_ALK | PUMP 2 MTR | ALARM ACK | 406 | 00023 | 55FTAH203 | PUMP 2 MTR | HI WIND TMP ALM | | | | D02-R01-S05-P07 | | | | | | | | | | | | | | | | | | 407 | 408 | 10062 | 55FZSC205 | PUMP 2 CHK VLV | CLOSED | | | | D03-R01-S05-P14 | | | | | | | | | | | | | | | | | | 409 | 44098 | 55FZSC205_STA | PUMP 2 CHK VLV | STATUS DISPLAY | 0-4095 STATUS | 410 | 00012 | 55FZLO205 | PUMP 2 CHK VLV | OPENED | | | | D02-R01-S04-P12 | | | | | | | | | | | | | | | | | | 411 | 00091 | 55FZLO205A | PUMP 2 CV LCPA | OPENED | | | | D03-R01-S10-P11 | | | | | | | | | | | | | | | | | | 412 | 413 | 04177 | 55FZSC205_ALA | PUMP 2 CHK VLV | CLOSED ALARM | 414 | 02108 | 55FZSC205_ALH | PUMP 2 CHK VLV | ALARM ACK HMI | 415 | 04178 | 55FZSC205_ALK | PUMP 2 CHK VLV | ALARM ACK | 416 | = NOT APPLICABL | E | | | INPUT
FIELD | REAL I/O | LCP | UTPUT | | PROCES: | | CONFIG | | PUMPS
ROUP A/M | PUMP #
DETAIL | PUMP # /
VLV A/M | | UMP/VLV
TUNING | | REND | | INTIME
R SUM. | | | |----------|---------------------------|------------------|-------------------|---------------|------|----------------|------------------------------------|-----------------|---------------|--------|----------------|---------------|--------|-------------|---------------------------------------|--|---------------------|-----------------|-------------------|----------|------|-------|------------------|----------|--------| | | | - NOT ALL EIGABL | | | ARY | TILLD | | ž , | 2 | , icco | | | 녿 | ₽ | | , i | | pilo | | | | | | | | | | | | | | | N
O | | Panel
r Ann. | or Ann.
ON | | or ALM Blink | or ALM Solid | | or ALM S | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Bli
100% or AI M S | 5 o ₹ 8 | or ALM S | | | | NO NO | or ALM Blink | | | | M RE | EGISTER TAG | DES | SCRIPTION | Range | ALAR | 0% or
50% | % DROP-RACK-
SLOT-POINT | 20% 0 | 100%
0% or | 100% | 2% or
50% o | 100%
0% or | ' \o ' | 100%
 % | 50% 1 | 3% ol
50% i | 3% or
50% c | 100
%
 % | 50% | %
 % | 50% | % or | 50% | COMMENT | SIGN-C | | | 1710 | 52. | 101 | range | | 0 4) | (92011 01111 | <u> </u> | | | <u>U 47</u> | Ì | 47 | | 47 | U W | <u> </u> | | 3 47 1 | | 47 , | | 47 | Semment. | 5.5.1 | | 17 | 02092 55FPMP300_OSH | PUMP 3 | OOS HMI | 18 | 04146 55FPMP300_OSM | PUMP 3 | OOS MODE | 19 | 02093 55FPMP300_ISH | PUMP 3 | INS HMI | 20 | 04147 55FPMP300_ISM | PUMP 3 | INS MODE | 21 | 22 | 02089 55FPMP300_ONH | PUMP 3 | ON HMI | 23 | 04143 55FPMP300_ONM | PUMP 3 | ON MODE | 24 | 02090 55FPMP300_OFH | PUMP 3 | OFF HMI | 25 | 04144 55FPMP300_OFM | PUMP 3 | OFF MODE | 26 | 02091 55FPMP300_AUH | PUMP 3 | AUTO MODE | 27
28 | 04145 55FPMP300_AUM | PUMP 3 | AUTO MODE | 29 | 10130 55FHS300B | PUMP 3 | REMOTE | | | | DOE DO4 CO2 DO2 | 30 | 10131 55FHS300J | PUMP 3 | HAND | | | | D05-R01-S03-P02
D05-R01-S03-P03 | 31 | 04149 55FPMP300_HND | PUMP 3 | HAND | | _ | | D05-R01-303-P03 | | | | | | | _ | | | | _ | | _ | | | | | | | 32 | 04149 3311 WII 300_11ND | I OWI 3 | TIAND | 33 | 04141 55FPMP300_DIS | PUMP 3 | DISABLE MODE | 34 | | PUMP 3 | WAIT | 35 | | | 11111 | 36 | 04148 55FPMP300_ON | PUMP 3 | ON | 37 | 00009 55FYL300L | PUMP 3 | ON | | | | D02-R01-S04-P09 | 38 | 00088 55FYL300P | PUMP 3 LCPA | ON | | | | D03-R01-S10-P08 | 39 | 40 | 44078 55FPMP300_MOD | PUMP 3 | MODE DISPLAY | 0-4095 MODE | 41 | 44077 55FPMP300_SYM | PUMP 3 | SYMBOL DISPLAY | 0-4095 SYMBOL | 42 | 44050 55FPB300_DUT | PUMP 3 | DUTY DISPLAY | 0-4095 DUTY | 43 | 44 | 04153 55FPMP300_FAA | PUMP 3 | FAIL ALARM | 15 | 02095 55FPMP300_FAH | PUMP 3 | FAIL ACK HMI | 16 | 04154 55FPMP300_FAK | PUMP 3 | FAIL ALM ACK | 47 | 48 | 10129 55FYS300M | PUMP 3 | PROTECT ON | | | | D05-R01-S03-P01 | 49 | 04076 55FYS300M_ALA | PUMP 3 | PROTECT ON ALM | 50 | 02050 55FYS300M_ALH | PUMP 3 | ALARM ACK HMI | 51 | 04077 55FYS300M_ALK | PUMP 3 | ALARM ACK | 52 | 04455 5555 5000 000 | DUMD 2 | COMMONIALADIA | 3 | 04155 55FPMP300_COA | PUMP 3 | COMMON ALARM | 54
55 | 04156
55FPMP300_COK | PUMP 3 | COMMON ALM ACK | | | | D00 D04 C05 D40 | 56 | 00029 55FYA300B | PUMP 3 | TROUBLE ALM | | | | D02-R01-S05-P13 | 57 | 02094 55FPMP300_ALR | PUMP 3 | ALARM RESET HMI | 58 | 02094 55FPMP300_ALR | PUMP 3 | PLC RESET HIMI | | | | D06-R01-S03-P03 | 59 | OUTTO OUTT WIF OUUTT | I Givii G | I LO INLOET | | | | D00-101-303-F03 | 30 | 44081 55FPMP300 RTC | PUMP 3 | RUNTME CURR DAY | 0-999 9 HOURS | 61 | 44082 55FPMP300_RTP | PUMP 3 | | 0-999.9 HOURS | 32 | 44079 55FPMP300_RTM | PUMP 3 | RUNTME CUMM MSD | 63 | 44080 55FPMP300_RTL | PUMP 3 | RUNTME CUMM LSD | 64 | 02096 55FPMP300_RTR | PUMP 3 | RUNTIME RESET | 000.0110010 | 65 | 52555 551 1 WII 505_1(1)(| . 51411 0 | . CONTINUE INCOLI | INPUT | REAL I/O | Ol | UTPUT | PROCESS | CONFIG | PUMPS | PUMP# | PUMP # / | PUMP/VLV | TRE | ND | RUNT | IME | | | |------|----------|---------------|------------------|-----------------|---------------|-------|--------------------------|-------------------------------------|------------------------------------|---|------------------------------|-------------------|----------|---|----------|-----|------|-------------------------------|-------------------|---------|----------| | | | | = NOT APPLICABLE | | | FIELD | | LCP | LCPA\FIEL | D OVERVIEW | | GROUP A/I | M DETAIL | VLV A/M | TUNING | | | OR S | UM. | | | | ITEM | REGISTER | TAG | DESC | CRIPTION | Range | SI z | DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK | 100% or Ann. ON
0% or ON
50% | 100%
0% or ON
50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | 100% of ALM Blink | | 0% or ON
50% or ALM Blink
100% or ALM Solid | 50% | 0% | 100% | 0% or ON
50% or Al M Blink | 100% or ALM Solid | COMMENT | SIGN-OFF | 466 | | 55FYS300A | PUMP 3 VS | READY | | | D05-R01-S03-P06 | | | | | | | | | | | | | | | | 467 | | 55FYS300A_RDY | PUMP 3 VS | READY | | | | | | | | | | | | | | | | | | | 468 | 10133 | 55FYS300 | PUMP 3 VS | ON | | | D05-R01-S03-P05 | | | | | | | | | | | | | | | | 469 | 470 | | 55FST300 | PUMP 3 VS | SPEED | 0-100 PERCENT | | D06-R01-S07-P01 | | | | | | | | | | | | | | | | 471 | | 55FPMP300_SPD | PUMP 3 VS | SPEED | 0-100 PERCENT | | | | | | | | | | | | | | | | | | 472 | 44095 | 55FST300_RPM | PUMP 3 | SPEED | 0-1188 RPM | | | | | | | | | | | | | | | | | | 473 | 474 | 40021 | 55FSC300 | PUMP 3 VS | SPEED | 0-100 PERCENT | | D06-R01-S09-P01 | | | | | | | | | | | | | | | | 475 | 476 | | 55FHS300K | PUMP 3 VS | SELECT | | | D05-R01-S03-P04 | | | | | | | | | | | | | | | | 477 | 04150 | 55FPMP300_VSS | PUMP 3 VS | SELECTED | | | | | | | | | | | | | | | | | | | 478 | 479 | | 55FPMP300_SRS | PUMP 3 VS | SPEED RAMP SET | 0.1-100 RAMP | | | | | | | | | | | | | | | | | | 480 | 44075 | 55FPMP300_SRP | PUMP 3 VS | SPEED RAMP SP | 0.1-100 RAMP | | | | | | | | | | | | | | | | | | 481 | 482 | 00113 | 55FPMP300 | PUMP 3 VS | RUN | | | D06-R01-S03-P01 | | | | | | | | | | | | | | | | 483 | 484 | 02087 | 55FPA300_AAH | PUMP 3 | A/M AUTO HMI | | | | | | | | | | | | | | | | | | | 485 | | 55FPA300_AAM | PUMP 3 | A/M AUTO MODE | | | | | | | | | | | | | | | | | | | 486 | 02088 | 55FPA300_AMH | PUMP 3 | A/M MANUAL HMI | | | | | | | | | | | | | | | | | | | 487 | 04140 | 55FPA300_AMM | PUMP 3 | A/M MANUAL MODE | | | | | | | | | | | | | | | | | | | 488 | 489 | | 55FPA300_AMS | PUMP 3 | A/M MAN SPD SET | 0-100 PERCENT | | | | | | | | | | | | | | | | | | 490 | 44073 | 55FPA300_AMP | PUMP 3 | A/M SPEED SP | 0-100 PERCENT | | | | | | | | | | | | | | | | | | 491 | 44074 | 55FPA300_AMB | PUMP 3 | A/M SPEED BAR | 0-100 PERCENT | | | | | | | | | | | | | | | | | | 492 | 493 | | 55FYS300B | PUMP 3 VS | TROUBLE | | | D05-R01-S03-P07 | | | | | | | | | | | | | | | | 494 | 04082 | 55FYS300B_ALA | PUMP 3 VS | TROUBLE ALARM | | | | | | | | | | | | | | | | | | | 495 | | 55FYS300B_ALH | PUMP 3 VS | ALARM ACK HMI | | | | | | | | | | | | | | | | | | | 496 | 04083 | 55FYS300B_ALK | PUMP 3 VS | ALARM ACK | | | | | | | | | | | | | | | | | | | 497 | 498 | 10136 | 55FHS300H | PUMP 3 VS | RESET | | | D05-R01-S03-P08 | | | | | | | | | | | | | | | | 499 | 500 | 10108 | 55FHS300L | PUMP 3 VS LCPA | START | | | D03-R01-S08-P12 | | | | | | | | | | | | | | | | 501 | 10109 | 55FHS300M | PUMP 3 VS LCPA | STOP | | | D03-R01-S08-P13 | | | | | | | | | | | | | | | | 502 | INPUT | REAL I/O | | OUTPUT | Γ | PRO | CESS | CONFIG | PU | JMPS | PUMP# | PUMP | #/ | PUMP/V | /LV | TREND | RU | NTIME | | | |------------|----------|----------------------------------|--------------------------|----------------------------------|-------|---------------------|-------|-----------------|--------------------------------|-----------------------|----------|-----|---------------------------------------|------------------------------|-------------------------|---------------------------------------|--------------|---|----------------|-----------|-----|-------|-------|--------------------------------|---------|----------| | | | | = NOT APPLICABI | LE | | | FIELD | | LCP | | PA\FIELD | | | | | UP A/M | DETAIL | VLV A | | TUNIN | | | | SUM. | | | | | | | | | | RM SUMMARY
or ON | 9 | DROP-RACK- | or Panel ON
% or Ann. BLINK | % or Ann. ON
or ON | % | | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | % or ALM Solid
or ON | 50% or ALM Blink
100% or ALM Solid | or ALM Blink | or ON % or ALM Solid or ON % or ALM Blink | % or ALM Solid | | 9 | % | or ON | or ALM Blink
6 or ALM Solid | | | | ITEM | REGISTER | TAG | DES | SCRIPTION | Range | ₹ % | 50% | SLOT-POINT | 20% | 100 | 50% | %0 | 9 2 | 20% | 0 % | 10 | 2 %0 | 90, 100 | 9 | %0
20% | 100 | 50% | 8 % | 50%
100% | COMMENT | SIGN-OFF | 503 | | 55FIIT300A_AMP | PUMP 3 VFD | AMPS PHASE A | | | | | | | | | _ | | _ | | | | | | | | _ | | | | | 504 | | 55FIIT300B_AMP | PUMP 3 VFD | AMPS PHASE B | | | | | | | | | | | _ | | | | | | | | | | | | | 505 | 44202 | 55FIIT300C_AMP | PUMP 3 VFD | AMPS PHASE C | 506 | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | 507 | | 55FISH300L_ALA | PUMP 3 VFD | OVERLD TRIP ALM | | | | | | | | | | | _ | | | | | | | | | | | | | 508 | | 55FISH300L_ALH | PUMP 3 VFD | ALARM ACK HMI | | | | | | | | | _ | | _ | | | | | | | | _ | _ | | | | 509 | 04363 | 55FISH300L_ALK | PUMP 3 VFD | ALARM ACK | 510 | 04004 | EETTOLIOCO! A! A | DUMP 23/55 | INIV OVER TALAS | 511
512 | | 55FTSH300J_ALA | PUMP 3 VFD
PUMP 3 VFD | INV OVRHEAT ALM
ALARM ACK HMI | 512 | | 55FTSH300J_ALH
55FTSH300J_ALK | PUMP 3 VFD | ALARM ACK | | _ | | | | | | | + | | | | | | | | | | _ | | | | | 514 | 04303 | 33F13H300J_ALK | POIVIP 3 VPD | ALARIVI ACK | 515 | 04366 | 55FESL300J_ALA | PUMP 3 VFD | LO DC VOLT ALM | 516 | | 55FESL300J_ALH | PUMP 3 VFD | ALARM ACK HMI | 517 | | 55FESL300J_ALK | PUMP 3 VFD | ALARM ACK | 518 | 04307 | JOI LOLGOOD_ALK | I OWN 3 VI D | ALARIVIAOR | 519 | 04368 | 55FYS300Q_ALA | PUMP 3 VFD | HARDWAR FLT ALM | 520 | | 55FYS300Q_ALH | PUMP 3 VFD | ALARM ACK HMI | 521 | | 55FYS300Q_ALK | PUMP 3 VFD | ALARM ACK | 522 | 0.000 | oo oooo <u>a_</u> , | | 7 LD II III 7 TOTO | 523 | 04370 | 55FESH300J_ALA | PUMP 3 VFD | HI DC VOLT ALM | 524 | | 55FESH300J_ALH | PUMP 3 VFD | ALARM ACK HMI | 525 | | 55FESH300J_ALK | PUMP 3 VFD | ALARM ACK | 526 | 527 | 04385 | 55FPMP300_ALM | PUMP 3 VFD | COMM FAIL ALARM | 528 | | _ | 529 | 10138 | 55FYS300L | PUMP 3 CS | READY | | | | D05-R01-S03-P10 | 530 | | 55FYS300L_RDY | PUMP 3 CS | READY | 531 | | 55FPMP300B | PUMP 3 CS | RUN | | | ı | 006-R01-S03-P02 | 532 | | 55FYS300J | PUMP 3 CS | ON | | | | 005-R01-S03-P09 | 533 | 534 | 10139 | 55FISH300 | PUMP 3 CS | OVERLOAD | | | | D05-R01-S03-P11 | 535 | 04084 |
55FISH300_ALA | PUMP 3 CS | OVERLOAD ALARM | 536 | 02054 | 55FISH300_ALH | PUMP 3 CS | ALARM ACK HMI | 537 | 04085 | 55FISH300_ALK | PUMP 3 CS | ALARM ACK | 538 | T | INF | PUT | REAL I/O | | OUTPL | T | PRC | CESS | CONF | IG | PUMPS | Р | UMP# | PUMP # | t/ Pl | JMP/VL\ | / TR | END | RUN | TIME | | | |------|----------|---------------|------------------|-----------------|---------------|---------------|---------|-------------|--------------------------|-------------------------------------|-------|---------|-------|---------------------------------------|------------------------------|-------------------|------------------------------|----------|---------------------------------------|------------------------------|-------------------------|---------|------|-----|--------|---------------------------------------|---------|----------| | | | | = NOT APPLICABLI | E | | | FIE | ELD | | LC | P LC | PA\FIEL | D OVE | RVIEW | | | GROUP A/I | И D | ETAIL | VLV A/I | M T | UNING | | | OR: | SUM. | | | | ITEM | REGISTER | TAG | DES | CRIPTION | Range | ALARM SUMMARY | % or ON | 50%
100% | DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann BI INK | | 5 | | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | 100% or ALM Solid | 0% or ON
50% or ALM Blink | 0% or ON | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | 100% or ALM Solid
0% | 50% | %0 | 50% | o o ON | 50% or ALM Blink
100% or ALM Solid | COMMENT | SIGN-OFF | 539 | | 55FMSH304 | PUMP 3 MTR | HI MOISTURE | | | | | D05-R01-S03-P12 | 540 | | 55FMSH304_ALA | PUMP 3 MTR | HI MOISTURE ALM | 541 | | 55FMSH304_ALH | PUMP 3 MTR | ALARM ACK HMI | 542 | | 55FMSH304_ALK | PUMP 3 MTR | ALARM ACK | 543 | 00027 | 55FMAH304 | PUMP 3 MTR | HI MOISTURE ALM | | | | | D02-R01-S05-P11 | 544 | 545 | 10141 | 55FTSH303 | PUMP 3 MTR | HI WIND TMP | | | | | D05-R01-S03-P13 | 546 | 04078 | 55FTSH303_ALA | PUMP 3 MTR | HI WIND TMP ALM | 547 | 02051 | 55FTSH303_ALH | PUMP 3 MTR | ALARM ACK HMI | 548 | 04079 | 55FTSH303_ALK | PUMP 3 MTR | ALARM ACK | 549 | 00028 | 55FTAH303 | PUMP 3 MTR | HI WIND TMP ALM | | | | | D02-R01-S05-P12 | 550 | 551 | 10142 | 55FZSC305 | PUMP 3 CHK VLV | CLOSED | | | | | D05-R01-S03-P14 | 552 | 44099 | 55FZSC305_STA | PUMP 3 CHK VLV | STATUS DISPLAY | 0-4095 STATUS | 553 | 00013 | 55FZLO305 | PUMP 3 CHK VLV | OPENED | | | | | D02-R01-S04-P13 | 554 | 00092 | 55FZLO305A | PUMP 3 CV LCPA | OPENED | | | | | D03-R01-S10-P12 | 555 | 556 | 04179 | 55FZSC305_ALA | PUMP 3 CHK VLV | CLOSED ALARM | 557 | 02109 | 55FZSC305_ALH | PUMP 3 CHK VLV | ALARM ACK HMI | 558 | 04180 | 55FZSC305_ALK | PUMP 3 CHK VLV | ALARM ACK | 559 | INPUT | REAL I/O | OU | TPUT | PROCESS | CON | NFIG | PUMPS | PUMP# | PUMP#/ | PUN | MP/VLV | TRE | ND | RUN | TIME | | | |------------|----------|--------------------------------|------------------|-----------------------------|------------------------------|------------|------------------|--------------------------------|-----------|---------------------------------|------|-------------------|---------------------------------|---------------------------------------|-------------|-----------------|--------|----------|------|---------|---------------------------|---------|----------| | | | | = NOT APPLICABLE | | | FIELD | | LCP | LCPA\FIEL | D OVERVIEW | 1 | (| GROUP A/M | DETAIL | VLV A/M | TU | JNING | | | OR S | SUM. | | | | | | | | | | ¥

 | | ON
BLINK | | キ
를 | . | キ
ig | 놓
ë | 돌
돌 | 돌 | | | | | | キ
흥 | | | | | | | | | | MM | | NO BLI | | ON
ALM Blink
or ALM Solia | | 1 Blink
M Soli | or ON or ALM Blink or ALM Solid | or ON
s or ALM Blin
% or ALM So | M Blink | Ď
<u>≥</u> | | | | į | ALM Blink
or ALM Solic | | | | | | | | | | | | Panel C
r Ann. E
or Ann. | N
O | ON ON OF ALM B |
 | ALM | ON
r ALM
or AL | or ALM I | ON or ALM E | 3 | | | | NO S | ALM E | | | | | | | | | | ⊽ I ≿ | S DROP-RACK- | <u> </u> | o ° | 3 2 3 | b . | o % | | or 0
% or | or 0 | 8 | % | | vo l | 5 | ō % | | | | ITEM | REGISTER | TAG | DESC | RIPTION | | 9% c | SLOT-POINT | 0% or
50% o
100% | 50% | 0% c
50%
100% | % 3 | 100% | 0%
50%
100 | 0% c
50%
100% | 90 % | 3 % | 50% | %0
%0 | 9 6 | %0 | 50%
100% | COMMENT | SIGN-OFF | | 500 | 00400 | | D. II 4D. 4 | 2021111 | 560 | | 55FPMP400_OSH | PUMP 4 | OOS HMI | 561
562 | | 55FPMP400_OSM
55FPMP400_ISH | PUMP 4
PUMP 4 | OOS MODE
INS HMI | 563 | | 55FPMP400_ISM | PUMP 4 | INS MODE | 564 | 01100 | 565 | 02099 | 55FPMP400_ONH | PUMP 4 | ON HMI | 566 | | 55FPMP400_ONM | PUMP 4 | ON MODE | 567 | 02100 | 55FPMP400_OFH | PUMP 4 | OFF HMI | 568 | | 55FPMP400_OFM | | OFF MODE | 569 | | 55FPMP400_AUH | PUMP 4 | AUTO HMI | 570 | 04163 | 55FPMP400_AUM | PUMP 4 | AUTO MODE | 571 | 10110 | | 5,45 | 551.655 | 572
573 | | 55FHS400B | PUMP 4
PUMP 4 | REMOTE
HAND | | | D05-R01-S04-P02 | | | | | | | | | | | | | | | | | | 574 | | 55FHS400J
55FPMP400_HND | PUMP 4 | HAND | | | D05-R01-S04-P03 | | | | | | | | | | | | | | | | | | 575 | 04107 | JJFFWF400_FIND | FOINF 4 | TIAND | 576 | 04159 | 55FPMP400_DIS | PUMP 4 | DISABLE MODE | 577 | | 55FPMP400_WAT | PUMP 4 | WAIT | 578 | 579 | 04166 | 55FPMP400_ON | PUMP 4 | ON | 580 | | 55FYL400L | PUMP 4 | ON | | | D02-R01-S04-P10 | | | | | | | | | | | | | | | | | | 581 | 00089 | 55FYL400P | PUMP 4 LCPA | ON | | | D03-R01-S10-P09 | | | | | | | | | | | | | | | | | | 582 | | | 5,45 | 583 | | 55FPMP400_MOD | PUMP 4 | MODE DISPLAY SYMBOL DISPLAY | 0-4095 MODE | 584
585 | | 55FPMP400_SYM
55FPB400_DUT | | DUTY DISPLAY | 0-4095 SYMBOL
0-4095 DUTY | 586 | 44031 | 3311 B400_B01 | I OWI 4 | DOTT DIOI LAT | 0-4095 DOTT | 587 | 04171 | 55FPMP400_FAA | PUMP 4 | FAIL ALARM | 588 | | 55FPMP400_FAH | PUMP 4 | FAIL ACK HMI | 589 | | 55FPMP400_FAK | PUMP 4 | FAIL ALM ACK | 590 | 591 | | 55FYS400M | PUMP 4 | PROTECT ON | | | D05-R01-S04-P01 | | | | | | | | | | | | | | | | | | 592 | | 55FYS400M_ALA | | PROTECT ON ALM | 593 | | 55FYS400M_ALH | PUMP 4 | ALARM ACK HMI | 594 | 04087 | 55FYS400M_ALK | PUMP 4 | ALARM ACK | 595
596 | 0/172 | 55FPMP400_COA | PUMP 4 | COMMON ALARM | 596 | | 55FPMP400_COA
55FPMP400 COK | PUMP 4 | COMMON ALARM COMMON ALM ACK | 598 | | 55FYA400B | PUMP 4 | TROUBLE ALM | | | D02-R01-S06-P02 | | | | | | | | | | | | | | | | | | 599 | 00004 | | . 5 | OODLL / LIVI | | | 202-101-000-1 02 | | | | | | | | | | | | | | | | | | 600 | 02104 | 55FPMP400_ALR | PUMP 4 | ALARM RESET HMI | 601 | | 55FPMP400H | | PLC RESET | | | D06-R01-S04-P03 | | | | | | | | | | | | | | | | | | 602 | 603 | | 55FPMP400_RTC | | | 0-999.9 HOURS | 604 | | 55FPMP400_RTP | | RUNTME PREV DAY | 0-999.9 HOURS | | | | | | | | | | | | | | | \perp | | | | | 605 | | 55FPMP400_RTM | | RUNTME CUMM MSD | | | | | | | | | | | | | | | | _ | | | | | 606 | | 55FPMP400_RTL | | | 0-999.9 HOURS | 607 | 02106 | 55FPMP400_RTR | PUMP 4 | RUNTIME RESET | 608 | INPUT | REAL I/O | OLI | ITPUT | PROCESS | CONFI | IG | PUMPS | PUMP# | PUMP: | #/ F | PUMP/VLV | / TRI | END | RUN | TIME | | | |------------|----------|---------------|------------------|------------------------|----------------|---------------------------------|----------------------------
--|-----------------|--------------------------------------|------------------------------|----|---|------------------------------|---|------|-------------------|-------|-------------|-----|---------------------------------------|---------|----------| | | | | = NOT APPLICABLI | _ | | FIELD | | LCP | | ELD OVERVIEV | | | GROUP A/M | DETAIL | | | TUNING | 110 | LIND | OR | | | | | | | | - NOT APPLICABLE | E | | > | | ~ | | | | - | - | | _ | - | 1011110 | | | | | | | | ITEM | REGISTER | TAG | DES | CRIPTION | | ALARM SUMMAR
0% or ON
50% | % DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK
100% or Ann. ON | 0% or ON
50% | 100%
0% or ON
50% or ALM Blink | 0% or ON
50% or ALM Blink | % | 0% or ON
50% or ALM Blink
100% or ALM Solic | 0% or ON
50% or ALM Blink | 100% or ALM Solid
0% or ON
50% or ALM Blink | % | 0%
50%
100% | %0 | 50%
100% | Ē | 50% or ALM Blink
100% or ALM Solid | COMMENT | SIGN-OFF | 609 | 10150 | 55FYS400A | PUMP 4 VS | READY | | | D05-R01-S04-P06 | | | | | | | | | | | | | | | | | | 610 | 04169 | 55FYS400A_RDY | PUMP 4 VS | READY | 611 | 10149 | 55FYS400 | PUMP 4 VS | ON | | | D05-R01-S04-P05 | | | | | | | | | | | | | | | | | | 612 | 613 | 30028 | 55FST400 | PUMP 4 VS | SPEED | 0-100 PERCENT | | D06-R01-S08-P01 | | | | | | | | | | | | | | | | | | 614 | 44086 | 55FPMP400_SPD | PUMP 4 VS | SPEED | 0-100 PERCENT | 615 | 44096 | 55FST400_RPM | PUMP 4 | SPEED | 0-1188 RPM | 616 | 617 | 40025 | 55FSC400 | PUMP 4 VS | SPEED | 0-100 PERCENT | | D06-R01-S10-P01 | | | | | | | | | | | | | | | | | | 618 | 619 | | 55FHS400K | PUMP 4 VS | SELECT | | | D05-R01-S04-P04 | | | | | | | | | | | | | | | | | | 620 | 04168 | 55FPMP400_VSS | PUMP 4 VS | SELECTED | 621 | 622 | | 55FPMP400_SRS | PUMP 4 VS | SPEED RAMP SET | 0.1-100 RAMP | 623 | 44085 | 55FPMP400_SRP | PUMP 4 VS | SPEED RAMP SP | 0.1-100 RAMP | 624 | | | | | | - | | | | | | | | | | | | | | | | | | | 625 | 00121 | 55FPMP400 | PUMP 4 VS | RUN | | | D06-R01-S04-P01 | | | | | | | | | | | | | | | | | | 626 | 20007 | 55504400 4411 | DUMB 4 | A /A A A L ITO L IA 41 | 627 | | 55FPA400_AAH | PUMP 4 | A/M AUTO HMI | 628 | | 55FPA400_AAM | PUMP 4 | A/M AUTO MODE | 629 | | 55FPA400_AMH | PUMP 4 | A/M MANUAL MODE | | | | | | | | | | | | | | _ | | | | | | | 630
631 | 04136 | 55FPA400_AMM | PUMP 4 | A/M MANUAL MODE | | | | | | | | | | | | | | | | - | _ | | | | 632 | 42047 | 55FPA400_AMS | PUMP 4 | A/M MAN SPD SET | 0-100 PERCENT | 633 | | 55FPA400_AMP | PUMP 4 | A/M SPEED SP | 0-100 PERCENT | 634 | | 55FPA400_AMB | PUMP 4 | A/M SPEED BAR | 0-100 PERCENT | | | | | | | | ++- | | | | | | | | | | | | 635 | 44004 | 00.17400_7WD | I SIVII T | , this cleb by it | O 1301 ENOLIVI | 636 | 10151 | 55FYS400B | PUMP 4 VS | TROUBLE | | | D05-R01-S04-P07 | | | | | | | | | | | | | | | | | | 637 | | 55FYS400B_ALA | PUMP 4 VS | TROUBLE ALARM | | | 2001101-004-101 | | | | | | | | | | | | | | | | | | 638 | | 55FYS400B_ALH | PUMP 4 VS | ALARM ACK HMI | 639 | | 55FYS400B_ALK | PUMP 4 VS | ALARM ACK | 640 | 641 | 10152 | 55FHS400H | PUMP 4 VS | RESET | | | D05-R01-S04-P08 | | | | | | | | | | | | | | | | | | 642 | | - | | | | | 200.100 | | | | | | | | | | | | | | | | | | 643 | 10110 | 55FHS400L | PUMP 4 VS LCPA | START | | | D03-R01-S08-P14 | | | | | | | | | | | | | | | | | | 644 | | 55FHS400M | PUMP 4 VS LCPA | STOP | | | D03-R01-S08-P15 | | | | | | | | | | | | | | | | | | 645 | INPUT | REAL I/O | | OUTPU | T | PRO | OCESS | CONFI | IG | PUMPS | PUMP # | # PI | PUMP # / | PUM | IP/VLV | TF | REND | RUN | IME | | | |------|----------|----------------|-----------------|-----------------|-------|---------------------|-------|-----------------|--------------------------------|--------------|-----------|-------|---------------------------------------|------------------------------|----------------|---|------------|-------------------------|-----------------------------|-----|-------------|----|------------|-------|--------------|---------|----------| | | | | = NOT APPLICABL | LE | | | FIELD | | LCF | | :PA\FIELI | _ | ERVIEW | | | GROUP A/M | DETAIL | | /LV A/M | | NING | | | OR S | | | | | | | | | | | RM SUMMARY
or ON | , | DROP-RACK- | or Panel ON
6 or Ann. BLINK | % or Ann. ON | , | or ON | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | % or ALM Solid | or ON
5 or ALM Blink
% or ALM Solid | ¥ | % or ALM Solid
or ON | r ALM Blink
or ALM Solid | | 9, | | % | or ON | or ALM Solid | | | | ITEM | REGISTER | TAG | DES | SCRIPTION | Range | AL % | 50% | SLOT-POINT | %0
20% | 100, | 50% | % | 50%
100 | 0%
20% | 100 | 0%
50%
100 | %09
20% | 100 | 50% 0 | %0 | 50%
100% | %0 | 50%
100 | 0 %0 | 100 | COMMENT | SIGN-OFF | 646 | 44203 | 55FIIT400A_AMP | PUMP 4 VFD | AMPS PHASE A | 647 | | 55FIIT400B_AMP | PUMP 4 VFD | AMPS PHASE B | 648 | 44205 | 55FIIT400C_AMP | PUMP 4 VFD | AMPS PHASE C | 649 | 650 | 04372 | 55FISH400L_ALA | PUMP 4 VFD | OVERLD TRIP ALM | 651 | 02205 | 55FISH400L_ALH | PUMP 4 VFD | ALARM ACK HMI | 652 | 04373 | 55FISH400L_ALK | PUMP 4 VFD | ALARM ACK | 653 | 654 | 04374 | 55FTSH400J_ALA | PUMP 4 VFD | INV OVRHEAT ALM | 655 | | 55FTSH400J_ALH | PUMP 4 VFD | ALARM ACK HMI | 656 | 04375 | 55FTSH400J_ALK | PUMP 4 VFD | ALARM ACK | 657 | 658 | 04376 | 55FESL400J_ALA | PUMP 4 VFD | LO DC VOLT ALM | 659 | | 55FESL400J_ALH | PUMP 4 VFD | ALARM ACK HMI | 660 | 04377 | 55FESL400J_ALK | PUMP 4 VFD | ALARM ACK | 661 | 662 | 04378 | 55FYS400Q_ALA | PUMP 4 VFD | HARDWAR FLT ALM | 663 | 02208 | 55FYS400Q_ALH | PUMP 4 VFD | ALARM ACK HMI | 664 | 04379 | 55FYS400Q_ALK | PUMP 4 VFD | ALARM ACK | 665 | 666 | 04380 | 55FESH400J_ALA | PUMP 4 VFD | HI DC VOLT ALM | 667 | | 55FESH400J_ALH | PUMP 4 VFD | ALARM ACK HMI | 668 | 04381 | 55FESH400J_ALK | PUMP 4 VFD | ALARM ACK | 669 | 670 | 04386 | 55FPMP400_ALM | PUMP 4 VFD | COMM FAIL ALARM | 671 | 672 | | 55FYS400L | PUMP 4 CS | READY | | | | D05-R01-S04-P10 | 673 | | 55FYS400L_RDY | PUMP 4 CS | READY | 674 | | 55FPMP400B | PUMP 4 CS | RUN | | | | D06-R01-S04-P02 | 675 | 10153 | 55FYS400J | PUMP 4 CS | ON | | | [| D05-R01-S04-P09 | 676 | 677 | | 55FISH400 | PUMP 4 CS | OVERLOAD | | | [| D05-R01-S04-P11 | 678 | | 55FISH400_ALA | PUMP 4 CS | OVERLOAD ALARM | 679 | | 55FISH400_ALH | PUMP 4 CS | ALARM ACK HMI | 680 | 04095 | 55FISH400_ALK | PUMP 4 CS | ALARM ACK | 681 | T | | INPUT | REAL I/O | | OUTPU | Т | PROCES | ss | CONFIG | PUMPS | PUMP# | Р | UMP#/ | PUN | MP/VLV | TR | END | RUN | TIME | | | |------------|----------|----------------------------|--------------------------|--------------------------------|---------------|---|-------|----------------------------|-------------------------------------|-------|----------|------------------------------|-------------------|---------------------------------------|---|------------------------------|-------------------------------|---------------------------------------|-----|--------|----|-------------|----------|---------------------------------------|---------|----------
 | | | | = NOT APPLICABLI | E | | | FIELD | | LC | P LC | PA\FIEL[| OVERVIE | EW | | GROUP A/M | DETAIL | V | 'LV A/M | TU | JNING | | | OR: | SUM. | | | | ITEM | REGISTER | TAG | DES | CRIPTION | Range | | 50% | S DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann BI INK | | | 0% or ON
50% or ALM Blink | 100% or ALM Solid | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | 100% or ALM Solid
0% or ON | 50% or ALM Blink
100% or ALM Solid | %0 | 50% | %0 | 50%
100% | 0% or ON | 50% or ALM Blink
100% or ALM Solid | COMMENT | SIGN-OFF | | 222 | 682 | | 55FMSH404 | PUMP 4 MTR | HI MOISTURE | | + | | D05-R01-S04-P12 | 683 | | 55FMSH404_ALA | PUMP 4 MTR | HI MOISTURE ALM | 684 | | 55FMSH404_ALH | PUMP 4 MTR | ALARM ACK HMI | 685 | | 55FMSH404_ALK | PUMP 4 MTR | ALARM ACK | | _ | | D00 D04 005 D40 | 686 | 00032 | 55FMAH404 | PUMP 4 MTR | HI MOISTURE ALM | | | | D02-R01-S05-P16 | 687 | 10157 | EEETCH 100 | DUMD 4 MTD | LILVA/IND TMD | | + | | DOE DOA 004 D40 | 688 | | 55FTSH403
55FTSH403_ALA | PUMP 4 MTR
PUMP 4 MTR | HI WIND TMP
HI WIND TMP ALM | | | | D05-R01-S04-P13 | 689
690 | | 55FTSH403_ALH | PUMP 4 MTR | ALARM ACK HMI | 691 | | 55FTSH403_ALK | PUMP 4 MTR | ALARM ACK | 692 | | 55FTAH403 | PUMP 4 MTR | HI WIND TMP ALM | | | | D02-R01-S06-P01 | 693 | 00000 | 001 17111400 | I OMI TIMITA | TH WIND TWI ALW | | _ | | D02-R01-300-F01 | 694 | 10158 | 55FZSC405 | PUMP 4 CHK VLV | CLOSED | | | | D05-R01-S04-P14 | 695 | | 55FZSC405 STA | PUMP 4 CHK VLV | STATUS DISPLAY | 0-4095 STATUS | | | 2001101 201111 | 696 | | 55FZLO405 | PUMP 4 CHK VLV | OPENED | | | | D02-R01-S04-P14 | 697 | | 55FZLO405A | PUMP 4 CV LCPA | OPENED | | | | D03-R01-S10-P13 | 698 | 699 | 04181 | 55FZSC405_ALA | PUMP 4 CHK VLV | CLOSED ALARM | 700 | | 55FZSC405_ALH | PUMP 4 CHK VLV | ALARM ACK HMI | 701 | | 55FZSC405_ALK | PUMP 4 CHK VLV | ALARM ACK | 702 | | _ | 703 | 44052 | 55FPB500_DUT | PUMP 5 | DUTY DISPLAY | 0-4095 DUTY | 704 | - Turney | | | | | | | 1 011 01 | | | | | | | | | | | | | - rojoot main | |------|----------|----------------|------------------|-----------------|------------------|-------------------------------------|----------------------------|--|----------|---|---------------|-------------------|--------|---|---|-----------|------|-----------|---|----------|-------|----------|---------------| | | | | | | | INPU | | | TPUT | PROCESS | CONFI | | JMPS | PUMP# | PUMP#/ | PUMP/ | | TREN | | RUNT | | 1 | , | | | | | = NOT APPLICABLE | | | FIELD |) | | LCPA\FIE | LD OVERVIEW | | GRO | UP A/M | DETAIL | VLV A/M | TUNII | NG | | | OR S | UM. | 1 | , | | ITEM | REGISTER | TAG | DES | CRIPTION | Range | ALAKINI SUMIMAKY
0% or ON
50% | % DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK
100% or Ann. ON | NO NO | 100%
0% or ON
50% or ALM Blink
100% or ALM Solid | ON
r ALM E | 6 or ALN
or ON | % % | 0% or ON
50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | %0
20% | 100% | %0
20% | % | 0% or ON | oor A | COMMENT | SIGN-OFF | 705 | 02062 | 55FPB100_S1H | PUMPS | DUTY SEQ1 HMI | 706 | 10006 | 55FHS049J | PUMP SEQ 1234 | SELECT | | | D02-R01-S03-P06 | | | | | | | | | | | | | | | | | | 707 | 04098 | 55FPB100_S1M | PUMPS | DUTY SEQ1 MODE | 708 | 00003 | 55FYL049J | PUMP SEQ 1234 | SELECTED | | | D02-R01-S04-P03 | | | | | | | | | | | | | | | | | | 709 | 710 | 02063 | 55FPB100_S2H | PUMPS | DUTY SEQ2 HMI | 711 | 10007 | 55FHS049M | PUMP SEQ 2341 | SELECT | | | D02-R01-S03-P07 | | | | | | | | | | | | | | | | | | 712 | 04099 | 55FPB100_S2M | PUMPS | DUTY SEQ2 MODE | 713 | 00004 | 55FYL049M | PUMP SEQ 2341 | SELECTED | | | D02-R01-S04-P04 | | | | | | | | | | | | | | | | | | 714 | 715 | 02064 | 55FPB100_S3H | PUMPS | DUTY SEQ3 HMI | 716 | 10008 | 55FHS049N | PUMP SEQ 3412 | SELECT | | | D02-R01-S03-P08 | | | | | | | | | | | | | | | | | | 717 | 04100 | 55FPB100_S3M | PUMPS | DUTY SEQ3 MODE | 718 | 00005 | 55FYL049N | PUMP SEQ 3412 | SELECTED | | | D02-R01-S04-P05 | | | | | | | | | | | | | | | | | | 719 | 720 | 02065 | 55FPB100_S4H | PUMPS | DUTY SEQ4 HMI | | | | | | | | | | | | | | | | | | 1 | | | 721 | | 55FHS049P | PUMP SEQ 4123 | SELECT | | | D02-R01-S03-P09 | | | | | | | | | | | | | | | | | | 722 | 04101 | 55FPB100_S4M | PUMPS | DUTY SEQ4 MODE | 723 | | 55FYL049P | PUMP SEQ 4123 | SELECTED | | | D02-R01-S04-P06 | | | | | | | | | | | | | | | | | | 724 | 725 | 02066 | 55FPB100_S5H | PUMPS | DUTY SEQ5 HMI | 726 | | 55FPB100_S5M | PUMPS | DUTY SEQ5 MODE | 727 | | _ | 728 | 42031 | 55FPB100_LSS | PUMPS | LD STRT LVL SET | 0-300 INCHES | 729 | | 55FPB100_LSP | PUMPS | LD STRT LVL SP | 0-300 INCHES | 730 | | 55FPB100_LTS | PUMPS | LD STOP LVL SET | 0-300 INCHES | 731 | | 55FPB100_LTP | PUMPS | LD STOP LVL SP | 0-300 INCHES | 732 | | 55FPB100_1SS | PUMPS | | 50-100 PERCENT | 733 | | 55FPB100_1SP | PUMPS | L1 STRT SPD SP | 50-100 PERCENT | 734 | | 55FPB100_1TS | PUMPS | L1 STOP SPD SET | 50-100 PERCENT | 735 | | 55FPB100_1TP | PUMPS | L1 STOP SPD SP | 50-100 PERCENT | 736 | | 55FPB100_2SS | PUMPS | L2 STRT SPD SET | 50-100 PERCENT | 737 | | 55FPB100_2SP | PUMPS | L2 STRT SPD SP | 50-100 PERCENT | 738 | | 55FPB100_2TS | PUMPS | | 50-100 PERCENT | 739 | | 55FPB100_2TP | PUMPS | | 50-100 PERCENT | 740 | 741 | 42038 | 55FPB100_3TS | PUMPS | L3 STOP SPD SET | 0-100 PERCENT | 742 | | 55FPB100_3TP | PUMPS | L3 STOP SPD SP | 0-100 PERCENT | 743 | | 55FPB100_3SS | PUMPS | L3 STRT SPD SET | 0-100 PERCENT | 744 | | 55FPB100_3SP | PUMPS | L3 STRT SPD SP | 0-100 PERCENT | 745 | | 55FPB100_4TS | PUMPS | L4 STOP SPD SET | 0-100 PERCENT | 746 | | 55FPB100_4TP | PUMPS | L4 STOP SPD SP | 0-100 PERCENT | 747 | | 55FPB100_4SS | PUMPS | L4 STRT SPD SET | 0-100 PERCENT | 748 | | 55FPB100_4SP | PUMPS | | 0-100 PERCENT | | | | | | | | | | | | | | | | | <u> </u> | | | , 40 | 77070 | 1001 1 100 401 | J. 01411 0 | | 5 TOO I EIGOLIGI | INPUT | REAL I/O | | OUTPU | Т | PROCESS | s c | ONFIG | PUMPS | S F | PUMP# | PUMP | #/ P | UMP/VLV | TRE | ND | RUNT | IME | | | |------------|----------|------------------------------------|----------------------------------|-----------------|----------------|------------------------|-------|--------------------------|-------------------------------------|-----------------------------|----------|------------------------------|-------------------------------|---------------------------------------|---------------|-------------------------------|--------|------------------------------|-------------------|-------------|-----|------|-------------------------------|-------------------------|----------|-----------| | | | | = NOT APPLICABLE | | | | FIELD | | LCF | P LC | PA\FIEL[| OVERVIEV | N | | GROUP A | A/M I | DETAIL | VLV A | /M | TUNING | | | OR S | UM. | | | | ITEM | REGISTER | R TAG | DESC | CRIPTION | Range | ALARM SUMMARY 3% or ON | 50% | DROP-RACK-
SLOT-POINT | 3% or Panel ON
50% or Ann. BLINK | 100% or Ann. ON
0% or ON | | 0% or ON
50% or ALM Blink | 100% or ALM Solid
3% or ON | 50% or ALM Blink
100% or ALM Solid | ON
r ALM B | 100% or ALM Solid
0% or ON | 5 % % | 0% or ON
50% or ALM Blink | 100% or ALM Solid | 50%
100% | %05 | 100% | 0% or ON
50% or Al M Blink | | COMMENT | SIGN-OFF | | 112111 | |
17.0 | 5233 | | runge | | 47 | 929119111 | <u> </u> | , U | , 4, , | | | (J) (| U 47 | Ì | J 47 (| 0 47 | ` | J 47 \ | | | <u> </u> | | SSIMMENT | 0.014 0.1 | | 749 | 750 | 4202 | 5 55FPE100_MLS | PUMPS | M/L MAN LVL SET | 0-300 INCHES | 751 | 4402 | 9 55FPE100_MLP | PUMPS | M/L LEVEL SP | 0-300 INCHES | 752 | 4403 | 0 55FPE100_MLB | PUMPS | M/L LEVEL BAR | 0-300 INCHES | 753 | 4403 | 5 55FPD100_PPV | PUMPS | PID PROC VAR | 0-300 INCHES | 754 | 755 | | 0 55FPC100_AAH | PUMPS | A/M AUTO HMI | 756 | | 6 55FPC100_AAM | PUMPS | A/M AUTO MODE | 757 | | 1 55FPC100_AMH | PUMPS | A/M MANUAL HMI | 758 | | 7 55FPC100_AMM | PUMPS | A/M MANUAL MODE | | | | | | | | | | | | _ | | | | | | | | | | | | 759 | | 0 55FPC100_AMS | PUMPS | A/M MAN SPD SET | 50-100 PERCENT | | | | | | | | | | | | | | | + | | | | | | | | 760 | | 6 55FPC100_AMP | PUMPS | A/M SPEED SP | 0-100 PERCENT | | | | | | | | | | | | + | | | | | | | | | | | 761
762 | 4403 | 7 55FPC100_AMB | PUMPS | A/M SPEED BAR | 0-100 PERCENT | | | | | | | | _ | | | | | | | | | | | | | | | 763 | 4202 | 6 55FPD100_PRS | PUMPS | PID RMPRATE SET | 0.1-100 RAMP | 764 | | 1 55FPD100_PRP | PUMPS | PID RAMPRATE SP | 0.1-100 RAMP | 765 | | 7 55FPD100_PPS | PUMPS | PID PROP SET | 5-500 PROP | 766 | | 2 55FPD100_PPP | PUMPS | PID PROP SP | 5-500 PROP | 767 | | 8 55FPD100_PIS | PUMPS | PID INTEG SET | 0-99.99 INTG | 768 | | 3 55FPD100_PIP | PUMPS | PID INTEG SP | 0-99.99 INTG | | | | | | | | + | | | | | | | | | | | | | | | 769 | | 9 55FPD100_PDS | PUMPS | PID DERV SET | 0-99.99 DERV | 770 | | 4 55FPD100_PDP | PUMPS | PID DERV SEP | 0-99.99 DERV | 771 | | _ | 772 | 3001 | 2 55FFIT075 | DISCHARGE | FLOW | 0-10 MGD | | | D04-R01-S06-P03 | 773 | 4410 | 6 55FFIT075_FLO | DISCHARGE | FLOW | 0-10 MGD | 774 | 4000 | 3 55FFI075 | DISCHARGE LCP | FLOW | 0-10 MGD | | | D02-R01-S10-P03 | 775 | 4001 | 5 55FFI075A | DISCHARGE LCPA | FLOW | 0-10 MGD | | | D04-R01-S09-P03 | 776 | 777 | | 9 55FFIT075_CAF | DISCHARGE | CUR AVERAGE FLO | 0-10 MGD | 778 | | 0 55FFIT075_CHF | DISCHARGE | CUR HIGHEST FLO | 0-10 MGD | 779 | | 1 55FFIT075_CLF | DISCHARGE | CUR LOWEST FLO | 0-10 MGD | 780 | | 7 55FFIT075_CTM | DISCHARGE | CUR TOT FLO MSD | 0-9999 MGD x10 | 781 | | 8 55FFIT075_CTL | DISCHARGE | CUR TOT FLO LSD | 0-9.999 MGD | | | | | | | | | | | | | | | | | | \perp | $\downarrow \downarrow$ | | | | 782 | | 4 55FFIT075_PAF | DISCHARGE | PRV AVERAGE FLO | 0-10 MGD | | | | | | | | | | | | | | | | | | | + | | | | 783 | | 5 55FFIT075_PHF | DISCHARGE | PRV HIGHEST FLO | 0-10 MGD | | | | | | | | | | | | | | | | | | \perp | + | | | | 784 | | 6 55FFIT075_PLF | DISCHARGE | PRV LOWEST FLO | 0-10 MGD | | | | | | | | | | | | | | | | | | \perp | + | | | | 785 | | 2 55FFIT075_PTM | DISCHARGE | PRV TOT FLO MSD | 0-9999 MGD x10 | | | | | | | | | | | | | | | | | | | + | | | | 786 | 4411 | 3 55FFIT075_PTL | DISCHARGE | PRV TOT FLO LSD | 0-9.999 MGD | 787 | 400= | 0.555760755 | DISCUADOE EL OVI | VMTD TDD | | | | D00 D04 000 D0 | 788 | | 0 55FYS075B | DISCHARGE FLOW | | | | | D03-R01-S06-P06 | 789
790 | | 3 55FYS075B_ALA | DISCHARGE FLOW
DISCHARGE FLOW | 5 55FYS075B_ALH
4 55FYS075B_ALK | 791 | | 8 55FYS075B_ALK | DISCHARGE FLOW | | | | | D04 B04 C04 B04 | 792
793 | 0010 | 0 335 1 30/3 | DISCHARGE FLOW | AWIT LEKU | | | | D04-R01-S04-P04 | 193 | I | | INPl | UT | REAL I/O | | OUTPL | T | PROC | ESS | CONFIC | 3 | PUMPS | PUMP# | PU | JMP#/ | PUMP | /VLV | TREND | R | UNTIME | | | |------------|----------|------------------------------|------------------------|-----------------------------|---------------|---|-----------------|----------|--------------------------|----------------------------------|-------|--------------------|-------|--------------|--------|---|---|-----------------------------|-------------------------------|---------------------------------------|------|------|------------|------------------|--------|---------|-----------| | | | | = NOT APPLICABLE | ≣ | | | FIEL | | | LC | | | OVER | | | | ROUP A/M | | | LV A/M | TUNI | | | _ | R SUM. | | | | ITEM | REGISTER | TAG | | CRIPTION | Range | | 3% or ON
50% | %0
%0 | DROP-RACK-
SLOT-POINT | 1% or Panel ON 60% or Ann. BLINK | _ | 5 | or ON | or ALM Solid | B
Z | | 2% or ON
50% or ALM Blink
100% or ALM Solid | % or ON
50% or ALM Blink | 100% or ALM Solid
3% or ON | 50% or ALM Blink
100% or ALM Solid | %09 | %00 | %0s
%0s | 100%
0% or ON | % % | COMMENT | SIGN-OFF | | TILIVI | KEGIOTEK | IAG | DEG | ORI TION | range | | 0 4 | D E | SEOT-I OINT | 0 4 | |) (t) - | - 0 4 |) - | ريا ت | | 7 2 2 | 0 0 | - 0 | Ω ~ | 0 4 |) - | 2 0 | | ₩ ← | COMMENT | 01014-011 | | 794 | 30004 | 55FPIT070 | DISCHARGE | PRESSURE | 0-50 PSI | | | D04 | -R01-S05-P04 | 795 | 44101 | 55FPIT070_PRS | DISCHARGE | PRESSURE | 0-50 PSI | 796 | 797 | | 55FPIT070_LLS | DISCHARGE | LOLO PRS SET | 0-50 PSI | 798 | 44105 | 55FPIT070_LLP | DISCHARGE | LOLO PRS SP | 0-50 PSI | 799 | | 55FPIT070_LLA | DISCHARGE | LOLO PRS ALM | 800 | | 55FPIT070_LLH | DISCHARGE | LOLO PRS ACKHMI | 801 | 04190 | 55FPIT070_LLK | DISCHARGE | LOLO PRS ALMACK | 802 | 803 | | 55FPIT070_LS | DISCHARGE | LO PRS SET | 0-50 PSI | 804 | | 55FPIT070_LP | DISCHARGE | LO PRS SP | 0-50 PSI | 805 | | 55FPIT070_LA | DISCHARGE | LO PRS ALARM | 806 | | 55FPIT070_LH | DISCHARGE | LO PRS ACKHMI | 807 | 04188 | 55FPIT070_LK | DISCHARGE | LO PRS ALMACK | | | | | | | | | | 4 | | - | | | | | | | | | | | | | 808 | 400.50 | | 5100111505 | | 0.50.501 | - | | | | | | | | - | | | | | | | | | | | | | | | 809 | | 55FPIT070_HS | DISCHARGE | HI PRS SET
HI PRS SP | 0-50 PSI | | | | | | | | | ++ | | | | + | | | | | | | | | | | 810 | | 55FPIT070_HP | DISCHARGE | | 0-50 PSI | 811 | | 55FPIT070_HA
55FPIT070_HH | DISCHARGE | HI PRS ALM
HI PRS ACKHMI | 812
813 | | | DISCHARGE
DISCHARGE | HI PRS ALMACK | | | | | | | | | | + | | _ | | | | | | | | | | | | | 814 | | 55FPIT070_HK
55FPAH070 | DISCHARGE | HI PRS ALM | | | | DOO | D04 C06 D42 | 815 | 00043 | 331 F AI 1070 | DISCHARGE | TII FING ALIVI | | | | D02 | 2-R01-S06-P13 | | | | | + | | | | - | | | | | | | | | | | 816 | 42040 | 55FPIT070_HHS | DISCHARGE | HIHI PRS SET | 0-50 PSI | 817 | | 55FPIT070_HHP | DISCHARGE | HIHI PRS SP | 0-50 PSI | 818 | | 55FPIT070_HHA | DISCHARGE | HIHI PRS ALM | 00101 | 819 | | 55FPIT070_HHH | DISCHARGE | HIHI PRS ACKHMI | 820 | | 55FPIT070_HHK | DISCHARGE | HIHI PRS ALMACK | 821 | | 55FPAHH070 | DISCHARGE | HIHI PRS ALM | | | | D02 | 2-R01-S06-P12 | 822 | , | | 1 | 823 | 04192 | 55FPIT070_COK | DISCHARGE | COMMON ALM ACK | 824 | | 55FPIT070_COA | DISCHARGE | COMMON ALARM | 825 | | _ | 826 | 10071 | 55FZSC175 | FORCEMAIN VLV1 | CLOSED | | | | D03 | R-R01-S06-P07 | 827 | | 55FZSC175_STA | FORCEMAIN VLV1 | STATUS DISPLAY | 0-4095 STATUS | 828 | | 55FZSC175_SYM | FORCEMAIN VLV1 | SYMBOL DISPLAY | 0-4095 STATUS | 829 | 830 | 10084 | 55FZSC176 | FORCEMAIN VLV2 | CLOSED | | | | D03 | 3-R01-S07-P04 | 831 | 44119 | 55FZSC176_STA | FORCEMAIN VLV2 |
STATUS DISPLAY | 0-4095 STATUS | 832 | 44120 | 55FZSC176_SYM | FORCEMAIN VLV2 | SYMBOL DISPLAY | 0-4095 STATUS | 833 | INPUT | REAL I/O | | ΓPUT | PROCESS | | | PUMPS | PUMP# | PUMP#/ | PUMP/VL\ | | END | | TIME | | | |------------|----------|------------------------------|------------------------|-------------------|----------------|----------------------------------|--------------------------|--|-----------|---|--------------|-------------------|---|---|---|-----------|------|-----|-----------|---------------------------------------|---------|----------| | | | | = NOT APPLICABL | E | | FIELD | | LCP | LCPA\FIEI | D OVERVIEW | ′ | GI | ROUP A/M | DETAIL | VLV A/M | TUNING | | | OR: | SUM. | | | | ITEM | REGISTER | TAG | DES | SCRIPTION | Range | ALARM SUMMARY
0% or ON
50% | DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK
100% or Ann. ON | N
O | 100%
0% or ON
50% or ALM Blink
100% or ALM Solid | ON
PALM E | 100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | %0
20% | %001 | 50% | ا تا
ا | 50% or ALM Blink
100% or ALM Solid | COMMENT | SIGN-OFF | | 024 | 00400 | 5555/550 0011 | DEOXO MAY | OOS HMI | 834
835 | | 55FFV556_OSH
55FFV556_OSM | RECYC VLV | OOS HIMI | 836 | | 55FFV556_ISH | RECYC VLV
RECYC VLV | INS HMI | 837 | | 55FFV556_ISM | RECYC VLV | INS MODE | 838 | 0420- | 1001 1 V000_101VI | INECTO VEV | ING MODE | 839 | 10067 | 55FHS556B | RECYC VLV | REMOTE | | | D03-R01-S06-P03 | | | | | | | | | | | | | | | | | 840 | | | | | | | 200 101 200 1 00 | | | | | | | | | | | | | | | | | 841 | 10068 | 55FYS556 | RECYC VLV | ON | | | D03-R01-S06-P04 | | | | | | | | | | | | | | | | | 842 | 843 | 04201 | 55FFV556_WAT | RECYC VLV | WAIT | 844 | 845 | | 55FZT556 | RECYC VLV | POSITION | 0-100 PERCENT | | D04-R01-S05-P03 | | | | | | | | | | | | | | | | | 846 | 44131 | 55FFV556_POS | RECYC VLV | POSITION | 0-100 POSITION | | | | | | | | | | | | | | | | | | | 847 | 40017 | 55FZI556 | RECYC LCPA | POSITION | 0-100 PERCENT | | D04-R01-S10-P01 | | | | | | | | | | | | | | | | | 848 | 849 | 40006 | 55FFV556 | RECYC VLV | POSITION | 0-100 PERCENT | | D04-R01-S07-P02 | | | | | | | | | | | | | | | | | 850 | 851 | 44132 | 55FFV556_SYM | RECYC VLV | SYMBOL DISPLAY | 0-4095 SYMBOL | | | | | | | _ | | | | | | | | | | | | 852
853 | 04201 | FEEE ARR | DECYC VIV | OPENED | 854 | | 55FFV556_OPD
55FFV556_ON | RECYC VLV
RECYC VLV | OPENED | 855 | | 55FFV556_MOD | RECYC VLV | MODE DISPLAY | 0-4095 MODE | | | | | | | | | | | | | | | | | | | 856 | 11100 | 0011 V000_INOD | TEGTO VEV | MODE BIOLEKT | 0 1000 MODE | | | | | | | | | | | | | | | | | | | 857 | 04206 | 55FFV556_FMA | RECYC VLV | FAIL2MOVE ALARM | 858 | | 55FFV556_FMH | RECYC VLV | FAL2MOV ACK HMI | 859 | |
55FFV556_FMK | RECYC VLV | FAIL2MOVE ACK | 860 | 861 | 10069 | 55FYS556B | RECYC VLV | TROUBLE | | | D03-R01-S06-P05 | | | | | | | | | | | | | | | | | 862 | | 55FFV556_TRA | RECYC VLV | TROUBLE ALARM | 863 | | 55FFV556_TAH | RECYC VLV | TROUBLE ACK HMI | 864 | | 55FFV556_TRK | RECYC VLV | TROUBLE ALM ACK | 865 | 00055 | 55FYA556B | RECYC VLV | TROUBLE ALM | | | D02-R01-S07-P07 | | | | | | | | | | | | | | | | | 866 | 867 | | 55FFV556_COK | RECYC VLV | COMMON ALM ACK | 868 | 04210 | 55FFV556_COA | RECYC VLV | COMMON ALARM | 869 | 2012 | | DEOVO VIIV | ALADAA DEGET LIST | 870 | 02122 | 55FFV556_ALR | RECYC VLV | ALARM RESET HMI | 871 | IN. | NPUT | REAL I/O | OL | JTPUT | PRO | CESS | CONFIG | 3 F | PUMPS | PUMP# | PUMP#/ | PUMF | P/VLV | TRE | ND | RUN | ГІМЕ | | | |------------|----------|------------------------------|------------------------|---------------------------------|------------------------------|---------------------------|-------------|--------------------------|-------------------------------------|--------|---------------|---------------------------------------|------------------------------|-------------------------------|---------------------------------------|---|---------|-----------|-------------|------------|------|----------|------|----------|----------| | | | | = NOT APPLICABLE | <u> </u> | | F | IELD | | LCP | LCPA\F | IELD OVER | RVIEW | | GR | ROUP A/M | DETAIL | VLV A/M | TUN | IING | | | OR S | UM. | 1 | | | ITEM | REGISTER | TAG | DESC | CRIPTION | Range | ALARM SUMMARY
0% or ON | 50%
100% | DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK | NO 0 | 0 %
o or 0 | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | 100% or ALM Solid
0% or ON | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | | % OI ALIM | 50%
100% | %0
*U\$ | 100% | 0% or ON | % C | COMMENT | SIGN-OFF | | 070 | 40050 | 5551/0550 AU 0 | DE0//07/17/ | N// NANHIN// OFT | 0 000 1001150 | 872 | | 55FVC556_MLS | RECYC VLV | M/L MAN LVL SET | 0-300 INCHES | | | | | | | | | | | | | | | | | | | <u> </u> | | | 873 | | 55FVC556_MLP | RECYC VLV | M/L LEVEL SP | 0-300 INCHES | | | | | | | _ | | | | | | | | | _ | | | 1 | | | 874 | 44123 | 55FVC556_MLB | RECYC VLV | M/L LEVEL BAR | 0-300 INCHES | | | | | | | _ | | | | | | | | | _ | | | 1 | | | 875 | 44400 | 555) (D550, DD) (| DE0//07/17/ | DID DDOOLAD | 0 000 1001150 | | | | | | | | | | | | | | | | | | | 1 | | | 876 | 44128 | 55FVB556_PPV | RECYC VLV | PID PROC VAR | 0-300 INCHES | 877 | 42054 | FEEL/DEEC DDC | DECYC VIV | DID DMDDATE CET | 0.4.400 BAMB | 878
879 | | 55FVB556_PRS | RECYC VLV
RECYC VLV | PID RMPRATE SET PID RAMPRATE SP | 0.1-100 RAMP
0.1-100 RAMP | 880 | | 55FVB556_PRP
55FVB556_PPS | RECYC VLV | PID PROP SET | 5-500 PROP | | | | | | | | | _ | | | | | + | | | | | | | | 881 | | 55FVB556_PPP | RECYC VLV | PID PROP SP | 5-500 PROP | | | | | | | | | _ | | | | | | | | | | | | | 882 | | 55FVB556_PIS | RECYC VLV | PID INTEG SET | 0-99.99 INTG | 883 | | 55FVB556_PIP | RECYC VLV | PID INTEG SP | 0-99.99 INTG | | | | | | | | | | | | | | _ | | | | | | | | 884 | | 55FVB556_PDS | RECYC VLV | PID DERV SET | 0-99.99 DERV | 885 | | 55FVB556_PDP | RECYC VLV | PID DERV SP | 0-99.99 DERV | 886 | 77121 | 001 48000_1 81 | REGIOVEV | I ID DERV OI | 0-55.55 BERV | 887 | 42058 | 55FVA556_AMS | RECYC VLV | A/M MAN POS SET | 0-100 PERCENT | 888 | | 55FVA556_AMP | RECYC VLV | A/M POS SP | 0-100 PERCENT | 889 | | 55FVA556_AMB | RECYC VLV | A/M POS BAR | 0-100 PERCENT | 890 | 891 | 02119 | 55FVA556_AMH | RECYC VLV | A/M MANUAL HMI | 892 | | 55FVA556_AMM | RECYC VLV | A/M MANUAL MODE | 893 | | 55FVA556_AAH | RECYC VLV | A/M AUTO HMI | 894 | | 55FVA556_AAM | RECYC VLV | A/M AUTO MODE | 895 | 896 | 10102 | 55FHS556J | RECYC VLV LCPA | POS SETPT OPEN | | | | D03-R01-S08-P06 | | | | | | | | | | | | | | | | | | | 897 | 10103 | 55FHS556K | RECYC VLV LCPA | POS SETPT CLOSE | | | | D03-R01-S08-P07 | | | | | | | | | | | | | | | | | | | 898 | 899 | 30011 | 55FFIT555 | RECYC | FLOW | 0-5 MGD | | | D04-R01-S06-P02 | | | | | | | | | | | | | | | | | | | 900 | 44121 | 55FFIT555_FLO | RECYC | FLOW | 0-5 MGD | 901 | | 55FFI555 | RECYC LCP | FLOW | 0-5 MGD | | | D02-R01-S10-P04 | | | | | | | | | | | | | | | | | | | 902 | 40016 | 55FFI555A | RECYC LCPA | FLOW | 0-5 MGD | | | D04-R01-S09-P04 | | | | | | | | | | | | | | | | | | | 903 | 904 | | 55FYS555B | RECYC FLOW | XMTR TRBL | | | | D03-R01-S07-P03 | | | | | | | | | | | | | | | | | | | 905 | | 55FYS555B_ALA | RECYC FLOW | XMTR TRBL ALM | 906 | | 55FYS555B_ALH | RECYC FLOW | ALARM ACK HMI | 907 | | 55FYS555B_ALK | RECYC FLOW | ALARM
ACK | <u> </u> | | | 908 | 00100 | 55FYS555 | RECYC FLOW | XMTR ZERO | | | | D04-R01-S03-P04 | | | | | | | | | | | | | | | | | | | 909 | INI | PUT | REAL I/O | | OUTPL | JT | PRC | CESS | CO | NFIG | PUMPS | PUMP: | # | PUMP#/ | PUMI | P/VLV | TRE | ND I | RUN | | | | |--------|-----------|------------------------------|----------------------------|----------------------------------|----------------|--------------|----------|-----------------|--------------------------|--------------------------------|-----------------|------------|------|--------------------------------------|-------|--------------------------------------|--|-------|----------|---|------|-------------|-----|------|-----|--------------------------------------|---------|-----------| | | | | = NOT APPLICABL | E | | | | ELD | THE THE | LC | | PA\FIEL | | | | | GROUP A/M | | | VLV A/M | | NING | | | OR | | | | | | | | NOT ALL ELOADE | _ | | ≿ | | | | 7 | | 71 7 () 1 | | 70 | | ٥ | О | | ō | 70 | | | | | | ٥ | | | | TEM I | REGISTER | TAG | DES | CCRIPTION | Range | ALARM SUMMAR | 0% or ON | 50%
100% | DROP-RACK-
SLOT-POINT | 3% or Panel ON 50% or Ann BLIN | 100% or Ann. ON | 5 😞 3 | NO P | 50% or ALM Blink
100% or ALM Soli | or ON | 50% or ALM Blink
100% or ALM Soli | 0% or ON
50% or ALM Blink
100% or ALM Soli | 5 | <u>ه</u> | 0% or ON
50% or ALM Blink
100% or ALM Solid | | 50%
100% | %0 | 100% | | 50% or ALM Blink
100% or ALM Soli | COMMENT | SIGN-OFF | | 12.14. | (EGIOTEIX | 1710 | BES | VOTALI FICIA | rango | \uparrow | | ψ) - | CEGT T CHAT | <u> </u> | 4 6 | , , | | 4) (| | 4) ← | 0 4) + | 0 4) | | J W 4 | | 4) (| | , – | | 4) - | COMMENT | GIGIT GIT | | 910 | 00078 | 55FYL560P | CLEANING LCP | DISABLED | | | | | D02-R01-S08-P14 | 911 | | 55FHS560J | CLEANING LCP | ACTIVATE | | | | | D02-R01-S03-P10 | 912 | 00077 | 55FYL560J | CLEANING LCP | ACTIVATED | | | | | D02-R01-S08-P13 | 13 | 914 | 00081 | 55FYL560A | CLEANING LCPA | READY | | | | | D03-R01-S10-P01 | 15 | 00082 | | CLEANING LCPA | ACTIVATED | | | | | D03-R01-S10-P02 | 916 | 10097 | 55FHS560K | CLEANING LCPA | PREPARE | | | | | D03-R01-S08-P01 | 917 | 00083 | 55FYL560K | CLEANING LCPA | PREPARED | | | | | D03-R01-S10-P03 | 918 | 10098 | 55FHS560L | CLEANING LCPA | START | | | | | D03-R01-S08-P02 | 919 | 00084 | 55FYL560L | CLEANING LCPA | STARTED | | | | | D03-R01-S10-P04 | 920 | 10099 | 55FHS560M | CLEANING LCPA | END | | | | | D03-R01-S08-P03 | 921 | 00085 | 55FYL560M | CLEANING LCPA | ENDED | | | | | D03-R01-S10-P05 | 922 | 923 | 10101 | 55FHS560P | PUMPS VS LCPA | SPEED SETPT DN | | | | | D03-R01-S08-P05 | 924 | 10100 | 55FHS560N | PUMPS VS LCPA | SPEED SETPT UP | | | | | D03-R01-S08-P04 | 925 | 40014 | 55FSI560 | PUMPS VS LCPA | SPEED | | | | | D04-R01-S09-P02 | 926 | 927 | 04021 | 55FPK100_CAM | PUMPS | CLEANING MODE | 928 | 44021 | 55FPL100_STA | PUMPS | CLEANING STATUS | 929 | 930 | 10180 | 55FLSH024 | DRYWELL | HI LEVEL | | | | | D05-R01-S06-P04 | 931 | 04212 | 55FLSH024_ALA | DRYWELL | HI LEVEL ALARM | 932 | 02125 | 55FLSH024_ALH | DRYWELL | ALARM ACK HMI | 933 | 04213 | 55FLSH024_ALK | DRYWELL | ALARM ACK | 934 | 00052 | 55FLAH024 | DRYWELL | HI LEVEL ALM | | | | | D02-R01-S07-P04 | 935 | 36 | | 55FLSH029 | SUMP | HI LEVEL | | | | | D05-R01-S05-P03 | 937 | | 55FLSH029_ALA | SUMP | HI LEVEL ALARM | 38 | | 55FLSH029_ALH | SUMP | ALARM ACK HMI | 939 | | 55FLSH029_ALK | SUMP | ALARM ACK | | | | | | | | | _ | | | | | | | | | | | | | | | | | 940 | 00053 | 55FLAH029 | SUMP | HI LEVEL ALM | | | | | D02-R01-S07-P05 | 941 | 40.10- | 555,40000 | OLINAD DUTTE (| ON | 942 | | 55FYS020 | SUMP PUMP 1 | ON | | | | | D05-R01-S05-P02 | 943 | | 55FYS020_ON | SUMP PUMP 1 | ON DIODI AV | 0.4005 | | | | | | | | | | | | | | | | | - | | | | | | | |)44 | | 55FYS020_SYM | SUMP PUMP 1 | | 0-4095 | | | | Bao Bai 533 53 | | | | | | | | | | | | | - | | | | | | | | 45 | 00015 | 55FYL020A | SUMP PUMP 1 | ON | | | | | D02-R01-S04-P15 | 946 | 4440- | EEEVOOOO DEO | CLIMD DUME 4 | DUNTME OURS SAY | 0.000.01101120 | 47 | | 55FYS020_RTC | SUMP PUMP 1 | | 0-999.9 HOURS | 948 | | 55FYS020_RTP | SUMP PUMP 1 | RUNTME PREV DAY | 0-999.9 HOURS | 949 | | 55FYS020_RTM | SUMP PUMP 1 | 950 | | 55FYS020_RTL
55FYS020_RTR | SUMP PUMP 1
SUMP PUMP 1 | RUNTME CUMM LSD
RUNTIME RESET | 0-999.9 HOURS | 951 | ### Job No. 4xxxxxx (J-xxx Job Name) TEST SIGN-OFF SHEETS Project Name | | | | 1 | | | | INPUT | REAL I/O | | OUTPUT | - | PROCESS | CON | IFIG | PUMPS | PUMP# | PUMP | P#/ P | UMP/VL\ | / TF | REND | RUNT | IME | T | | |------|----------|---------------|------------------|-----------------|-----------------|------------------------|-------|--------------------------|-------------------------------------|-----------------------------|----------|------------------------------|----------|------|---|---|------------------------------|-----------|---------|------|-------------|------------------------------|-------------------|---------|----------| | | | | = NOT APPLICABLE | E | | | FIELD | | LCF | P LCF | PA\FIELD | OVERVIEV | v | | GROUP A/M | DETAIL | VLV A | VM | TUNING | | | OR SI | UM. | | | | ITEM | REGISTER | TAG | DES | CRIPTION | Range | ALARM SUMMARY 0% or ON | 50% | DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK | 100% or Ann. ON
0% or ON | 50% | 0% or ON
50% or ALM Blink | 0% or ON | | 0% or ON
50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | 0% or ALN | 50% | %0 | 50%
100% | 0% or ON
50% or ALM Blink | 100% or ALM Solid | COMMENT | SIGN-OFF | 953 | | 55FYS025 | SUMP PUMP 2 | ON | | | | D05-R01-S06-P02 | | | | | | | | | | | | | | | | | | | 954 | | 55FYS025_ON | SUMP PUMP 2 | ON | 955 | | 55FYS025_SYM | SUMP PUMP 2 | SYMBOL DISPLAY | 0-4095 | 956 | 00016 | 55FYL025A | SUMP PUMP 2 | ON | | | | D02-R01-S04-P16 | | | | | | | | | | | | | | | | | | | 957 | 958 | | 55FYS025_RTC | SUMP PUMP 2 | RUNTME CURR DAY | 0-999.9 HOURS | 959 | | 55FYS025_RTP | SUMP PUMP 2 | RUNTME PREV DAY | 0-999.9 HOURS | 960 | | 55FYS025_RTM | SUMP PUMP 2 | RUNTME CUMM MSD | 0-9999 HRS x100 | 961 | | 55FYS025_RTL | SUMP PUMP 2 | RUNTME CUMM LSD | 0-999.9 HOURS | 962 | 02128 | 55FYS025_RTR | SUMP PUMP 2 | RUNTIME RESET | 963 | 964 | | 55FYS028B | SUMP PUMPS | TROUBLE | | | | D05-R01-S06-P03 | | | | | | | | | | | | | | | | | | | 965 | | 55FYS028B_ALA | SUMP PUMPS | TROUBLE ALARM | 966 | | 55FYS028B_ALH | SUMP PUMPS | ALARM ACK HMI | 967 | | 55FYS028B_ALK | SUMP PUMPS | ALARM ACK | 968 | 00054 | 55FYA028B | SUMP PUMPS | TROUBLE ALM | | | | D02-R01-S07-P06 | | | | | | | | | | | | | | | | | | | 969 | 970 | 10164 | 55FHS059 | DRYWELL FANS | PAUSE | | | | D05-R01-S05-P04 | | | | | | | | | | | | | | | | | | | 971 | INPUT | REAL I/O | | OUTPUT | | | OCESS | CON | NFIG | PUMPS | | PUMP# | | JMP#/ | | /IP/VLV | TRI | END | RUN' | | | | |------------|----------|--------------------------------|-----------------|-----------------|-----------------|---------------|-------|--------------------------|--------------|---------------|----------|--------|-----------------------|----------------|-------------------------------|--------------|-----------------|--------
--------------|------------------|----------|---------|-----|-------------|------|-------------------------------|---------|----------| | | | | = NOT APPLICABL | .E | | _ | FIELD | | LCF | | PA\FIELD | OVE | RVIEW | ' | | GROUP A | /M | DETAIL | VL | _V A/M | TU | INING | | | OR S | SUM. | | | | | | | | | | 상 | | | ON
BLINK | N
O | | | 독
ie | . | nk
olid | 녿 | 흥 | 녿 : | | 녿 | | | | | - | alid
Sid | | | | | | | | | | Ž | | | | O | | | ALM Blin
or ALM So | | or ALM Blink
6 or ALM Soli | or ALM Blink | Σ | Bink | | 50% or ALM Blink | 5
≥ | | | | | or ALM Billink
or ALM Soli | | | | | | | | | | N SUN | : | | anel
Ann. | or Anı | | N
O | ALM B | N _O | ALM
ALI | z | ₹ _z | or ALM | or ALM
ON | V V | 2 | | | | z | ALM B | | | | | | | | | | or O | | DDOD DAOK | r p | % or A | 29 | 0
0 | or A | | or /
% or | | o o o | b b | o o | or' | 5 | % | | % | | or % | | | | I ITEM I | REGISTER | TAG | DES | SCRIPTION | Range | ALARM SUMMARY | 50% | DROP-RACK-
SLOT-POINT | 2% C | 100%
0% or | |) _ | 50%
100° | % | 50% o
100% | 0% c | 9 8 | 20% | % 100 | 50% | 3 % | 50% | %0 | 50%
100% | 0% 0 | 30% c | COMMENT | SIGN-OFF | | | | | | | , | | | | <u> </u> | Ì | | | | | | <u> </u> | | | | | | | | | | | | | | 972 | 02134 | 55FFAN053_OSH | DRYWELL SF1 | OOS HMI | 973 | 04227 | 55FFAN053_OSM | DRYWELL SF1 | OOS MODE | 974 | 02135 | 55FFAN053_ISH | DRYWELL SF1 | INS HMI | 975 | 04228 | 55FFAN053_ISM | DRYWELL SF1 | INS MODE | 976 | 977 | | 55FFAN053_ONH | DRYWELL SF1 | ON HMI | 978 | | 55FFAN053_ONM | DRYWELL SF1 | ON MODE | 979 | | 55FFAN053_OFH | DRYWELL SF1 | OFF HMI | 980 | | 55FFAN053_OFM | DRYWELL SF1 | OFF MODE | | | | | | | | | | | | | _ | | | | | | | | | | | | | 981 | | 55FFAN053_AUH | DRYWELL SF1 | AUTO MODE | 982 | 04226 | 55FFAN053_AUM | DRYWELL SF1 | AUTO MODE | 983 | 40.00 | 5551100505 | DDVAVELL CE | DEMOTE | | | | B05 B5 1 51 | 984 | | 55FHS053B | DRYWELL SF1 | REMOTE | | | | D05-R01-S05-P05 | 985 | 10167 | 55FYS053A | DRYWELL SF1 | READY | | | | D05-R01-S05-P07 | 986 | 04000 | EEEEANOES DIO | DRYWELL SF1 | DISABLE MODE | 987 | | 55FFAN053_DIS
55FFAN053_WAT | DRYWELL SF1 | WAIT | 988 | 04223 | 55FFANU53_WAT | DRYWELL SFT | WAII | 989 | 10166 | 55FYS053 | DRYWELL SF1 | ON | | | | DOE DOA COE DOC | | | | | | - | | | | | _ | | | | | | | | | | | 990 | | 55FFAN053_ON | DRYWELL SF1 | ON | | | | D05-R01-S05-P06 | 991
992 | 04229 | 55FFAN055_ON | DRTWELL 3F1 | ON | 992 | 00116 | 55FFAN053 | DRYWELL SF1 | RUN | | | | D06 D04 602 D04 | 994 | 00110 | 3311 AN033 | DICTWELL SI T | KON | | | | D06-R01-S03-P04 | 995 | 44145 | 55FFAN053_MOD | DRYWELL SF1 | MODE DISPLAY | 0-4095 MODE | 996 | | 55FFAN053_SYM | DRYWELL SF1 | | 0-4095 SYMBOL | 997 | 77177 | 00117414000_01W | DICTWELL OF T | OTWIDGE DIGITER | 0-4000 OTMBOL | 998 | 04230 | 55FFAN053_FAA | DRYWELL SF1 | FAIL ALARM | 999 | | 55FFAN053_FAH | DRYWELL SF1 | FAIL ACK HMI | 1000 | | 55FFAN053_FAK | DRYWELL SF1 | FAIL ALM ACK | 1001 | 1002 | 10168 | 55FISH053 | DRYWELL SF1 | OVERLOAD | | | | D05-R01-S05-P08 | 1003 | | 55FFAN053_DRA | DRYWELL SF1 | DRIVE ALARM | 1004 | | 55FFAN053_DAH | DRYWELL SF1 | DRIVE ACK HMI | 1005 | | 55FFAN053_DRK | DRYWELL SF1 | DRIVE ALM ACK | 1006 | | _ | 1007 | 04235 | 55FFAN053_COK | DRYWELL SF1 | COMMON ALM ACK | 1008 | | 55FFAN053_COA | DRYWELL SF1 | COMMON ALARM | 1009 | 02136 | 55FFAN053_ALR | DRYWELL SF1 | ALARM RESET HMI | 1010 | 1011 | 44148 | 55FYS053_RTC | DRYWELL SF1 | RUNTME CURR DAY | 0-999.9 HOURS | 1012 | | 55FYS053_RTP | DRYWELL SF1 | RUNTME PREV DAY | 0-999.9 HOURS | 1013 | | 55FYS053_RTL | DRYWELL SF1 | RUNTME CUMM LSD | 0-999.9 HOURS | 1014 | | 55FYS053_RTM | DRYWELL SF1 | RUNTME CUMM MSD | 0-9999 HRS x100 | 1015 | 02139 | 55FYS053_RTR | DRYWELL SF1 | RUNTIME RESET | 1016 | 1017 | | 55FFSL054 | DRYWELL SF1 | LO FLOW | | | | D05-R01-S05-P09 | 1018 | | 55FFSL054_ALA | DRYWELL SF1 | LO FLOW ALARM | 1019 | | 55FFSL054_ALH | DRYWELL SF1 | ALARM ACK HMI | 1020 | 04237 | 55FFSL054_ALK | DRYWELL SF1 | ALARM ACK | 1021 | 1022 | 00059 | 55FFAL054 | DRYWELL SF1 | TROUBLE ALM | | | | D02-R01-S07-P11 | 1023 | 1024 02144 05FFANDS1_0SH | MMENT SIGN-OFF | |--|-------------------| | TIESA BEGISTER TIAO BESCRIPTION BE | MMENT SIGN-OFF | | 1024 | VIIVIENT SIGN-OFF | | 1025 04240 SPFANOS OSM DERWELLE PT NS MODE | | | 1025 024-05 SEPANOS CSM DERWELLER NS MODE | | | 1026 | | | 1027 | | | 1028 | | | 1030 04240 (SFFANOS) _ ONL | | | 1031 02420 SEFFANDS AUH DEVYMELLEFT OF HMDE | | | 1032 0424 SEFFANDS OPM OPT WELL EF1 OFF MODE 1034 0424 SEFFANDS ALM OPKWELL EF1 AUTO MODE 1035 0 1038 OFF MODE OPKWELL EF1 AUTO MODE 1036 10181 SEFFANDS ALM OPKWELL EF1 REMOTE ODS-R01-S08-P05 1037 10183 SEFFANDS OPKWELL EF1 REMOTE ODS-R01-S08-P05 1038 O4238 SEFFANDS OR WELL EF1 ON OPKWELL EF1 ON ODS-R01-S08-P06 1041 O423 SEFFANDS OR OPKWELL EF1 ON ODS-R01-S08-P06 1044 O4238 SEFFANDS OR OPKWELL EF1 ON ODS-R01-S08-P06 1045 O4246 SEFFANDS OR OPKWELL EF1 ON ODS-R01-S08-P06 1046 O4246 SEFFANDS OR OPKWELL EF1 SYMBOL DISPLAY O4095 MODE 1047 O4456 SEFFANDS FAA OPKWELL EF1 SYMBOL DISPLAY O4095 MODE 1048 O4456 SEFFANDS FAA OPKWELL EF1 SYMBOL DISPLAY O4095 MODE 1050 O4246 SEFFANDS FAA OPKWELL EF1 FAIL ALARM OFKWELL EF1 OFKWELL EF1 OKA OFKWELL EF1 OKA OFKWELL EF1 OKA | | | 1033 02449 SSFFANDS1_AUM DRYWELL EPI AUTO MMD E 1036 10181 SSFFANDS1_AUM DRYWELL EPI REMOTE DDS-R01-S06-P05 DDS-R01-S06-P06 DDS-R01-S06-P08 DD | | | 1034 | | | 1036 | | | 1036 10181 55FFAN051 DR DRYWELL EF1 REMOTE DDS-R01-S06-P05 DDS-R01-S06 | | | 1037 10183 58FY3051A DRYWELL EF1
READY DDS-R01-S06-P07 DDS-R01-S06-P08 | | | 1038 | | | 1039 04238 55FFAN051_DIS DRYWELL EP1 DISABLE MODE 1040 04239 55FFAN051_WAT DRYWELL EP1 WAIT 1041 | | | 1040 04239 55FFAN051_WAT DRYWELL EF1 WAIT 1041 1042 10192 55FYS051 DRYWELL EF1 ON 1043 04245 55FFAN051_ON DRYWELL EF1 ON 1044 1045 04245 55FFAN051_DAN DRYWELL EF1 RUN 1046 1047 44151 55FFAN051_MOD DRYWELL EF1 SYMBOL DISPLAY 04095 MODE 1047 44151 55FFAN051_SYM DRYWELL EF1 SYMBOL DISPLAY 04095 MODE 1048 44150 55FFAN051_SYM DRYWELL EF1 SYMBOL DISPLAY 04095 SYMBOL 1050 04246 55FFAN051_FAA DRYWELL EF1 FAIL ALARM 1051 02147 55FFAN051_FAA DRYWELL EF1 FAIL ALARM DRYWELL EF1 OVERLOAD 1055 04248 55FFAN051_DAA DRYWELL EF1 ORIVE ALARM ACK HMI DRYWEL EF1 ORIVE ACK HMI DRYWELL EF1 ORIVE ACK HMI DRYWE | | | 1041 | | | 1042 10182 55FYS051 DRYWELL EF1 ON 1043 04245 55FFAN051_ON DRYWELL EF1 ON 1044 1044 1044 1044 1044 1044 1044 1044 | | | 1043 04245 55FFAN051_ON DRYWELL EF1 ON 1044 | | | 1044 | | | 1045 00124 55FFAN051 DRYWELL EF1 RUN 1046 | | | 1046 | | | 1047 | | | 1048 | | | 1050 04246 55FFAN051_FAA DRYWELL EF1 FAIL ALARM 1051 02147 55FFAN051_FAH DRYWELL EF1 FAIL ACK HMI 1052 04247 55FFAN051_FAK DRYWELL EF1 FAIL ALM ACK 1053 | | | 1050 | | | 1051 02147 55FFAN051_FAH DRYWELL EF1 FAIL ACK HMI 1052 04247 55FFAN051_FAK DRYWELL EF1 FAIL ALM ACK 1053 | | | 1053 | | | 1054 10184 55FISH051 DRYWELL EF1 OVERLOAD D05-R01-S06-P08 D05- | | | 1055 04248 55FFAN051_DRA DRYWELL EF1 DRIVE ALARM 1056 02148 55FFAN051_DAH DRYWELL EF1 DRIVE ACK HMI 1057 04249 55FFAN051_DRK DRYWELL EF1 DRIVE ALM ACK | | | 1056 02148 55FFAN051_DAH DRYWELL EF1 DRIVE ACK HMI DRIVE ALM ACK A | | | 1057 04249 55FFAN051_DRK DRYWELL EF1 DRIVE ALM ACK | | | | | | 140501 | | | 1058 | | | 1059 04250 55FFAN051_COA DRYWELL EF1 COMMON ALARM | | | 1060 04251 55FFAN051_COK DRYWELL EF1 COMMON ALM ACK 1061 02146 55FFAN051_ALR DRYWELL EF1 ALARM RESET HMI | | | 1061 02146 55FFAN051_ALR DRYWELL EF1 ALARM RESET HMI 1062 1063 1064 1065 | | | 1062 1063 44152 55FYS051_RTM DRYWELL EF1 RUNTME CUMM MSD 0-9999 HRS x100 1063 1063 1064 | | | 1064 44153 55FYS051_RTL DRYWELL EF1 RUNTME CUMM ISD 0-9999 FIRS X100 1064 44153 55FYS051_RTL DRYWELL EF1 RUNTME CUMM ISD 0-9999 HOURS | | | 1065 44154 55FYS051_RTC DRYWELL EF1 RUNTME CURR DAY 0-999.9 HOURS | | | 1066 44155 55FYS051_RTP DRYWELL EF1 RUNTME PREV DAY 0-999.9 HOURS | | | 1067 02149 55FYS051_RTR DRYWELL EF1 RUNTIME RESET | | | 1068 | | | 1069 10185 55FFSL052 DRYWELL EF1 LO FLOW D05-R01-S06-P09 | | | 1070 04252 55FFSL052_ALA DRYWELL EF1 LO FLOW ALARM | | | 1071 02150 55FFSL052_ALH DRYWELL EF1 ALARM ACK HMI | | | 1072 04253 55FF\$L052_ALK DRYWELL EF1 ALARM ACK | | | 1073 | | | 1074 00060 55FFAL052 DRYWELL EF1 TROUBLE ALM D02-R01-S07-P12 D02-R01-S07-P12 | | | 17/10 Attachment Comple Test Sheet | | | | | | | | | INP | JT REAL I/O | OU | TPUT | PRC | CESS | CONFIG | G P | UMPS | PUMP# | PUMP#/ | PUMP/VL | vI - | ΓREND | ΙR | UNTIME | 1 | | |--------------|----------|--------------------------------|-------------------------------|------------------|-------------|------------------------|-----------------|-------------------------------------|----------|-----|---------------------------------------|------------------------------|-------|---------|---|---------|---------|------|-------|------------------|------------------|---------|----------| | | | | = NOT APPLICABLE | | | FIE | _ | | LCPA\FII | | | | | OUP A/M | DETAIL | VLV A/M | TUNING | | | | R SUM. | | | | ITEM | REGISTER | TAG | | RIPTION | | ALARM SUMMARY 0% or ON | • | 0% or Panel ON
50% or Ann. BLINK | NO | Z | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | Solid | M Blink | 0% or ON
50% or ALM Blink
100% or ALM Solid | | | 100% | 20% | 100%
0% or ON | 50% or ALM Blink | COMMENT | SIGN-OFF | 1076 | | 55FASH580 | | SMOKE | | | D05-R01-S07-P05 | | | | | | | | | | | | | | | | | | 1077 | | 55FAAH580_ALA | | SMOKE ALARM | 1078 | | 55FAAH580_ALH | | ALARM ACK HMI | 1079 | | 55FAAH580_ALK | | ALARM ACK | 1080 | 00056 | 55FAAH580 | DRYWELL | SMOKE ALM | | | D02-R01-S07-P08 | | | | | | | | | | | | | | | | | | 1081 | | | | o =. | 1082 | | 55FAIT050 | | % LEL | 0-100 %LEL | | D06-R01-S08-P04 | | | | | | | | | | | | | | | | | | 1083 | 44156 | 55FAIT050_LEL | WW GAS MONITOR | LEL | 0-100 %LEL | 1084 | 42062 | EEEAITOEO II S | WW GAS MONITOR | LOLOTEL SET | 0-100 %LEL | 1085
1086 | | 55FAIT050_LLS
55FAIT050_LLP | WW GAS MONITOR WW GAS MONITOR | | 0-100 %LEL | 1087 | | 55FAIT050_LLA | WW GAS MONITOR | | 0-100 /0LEL | 1088 | | 55FAIT050_LLH | WW GAS MONITOR | | | | | | | | | | | | | | | | | _ | | | | | 1089 | | 55FAIT050_LLK | WW GAS MONITOR | 1090 | 01200 | 001711000_EER | WW GAG MOTHER | LOLO ELE ALIMAGR | 1091 | 42061 | 55FAIT050_LS | WW GAS MONITOR | LO LEL SET | 0-100 %LEL | 1092 | | 55FAIT050_LP | WW GAS MONITOR | | 0-100 %LEL | 1093 | | 55FAIT050_LA | WW GAS MONITOR | 1094 | | 55FAIT050_LH | WW GAS MONITOR | 1095 | | 55FAIT050_LK | WW GAS MONITOR | 1096 | | _ | 1097 | 42060 | 55FAIT050_HS | WW GAS MONITOR | HI LEL SET | 0-100 %LEL | 1098 | | 55FAIT050_HP | WW GAS MONITOR | HI LEL SP | 0-100 %LEL | 1099 | 04258 | 55FAIT050_HA | WW GAS MONITOR | HI LEL ALM | 1100 | 02153 | 55FAIT050_HH | WW GAS MONITOR | HI LEL ACKHMI | 1101 | 04259 | 55FAIT050_HK | WW GAS MONITOR | HI LEL ALMACK | 1102 | 00048 | 55FAAH050 | WW GAS MONITOR | HI LEL ALM | | | D02-R01-S06-P16 | | | | | | | | | | | | | | | | | | 1103 | 1104 | | 55FAIT050_HHS | WW GAS MONITOR | | 0-100 %LEL | 1105 | | 55FAIT050_HHP | WW GAS MONITOR | | 0-100 %LEL | 1106 | | 55FAIT050_HHA | WW GAS MONITOR | 1107 | | 55FAIT050_HHH | WW GAS MONITOR | 1108 | | 55FAIT050_HHK | WW GAS MONITOR | 1109 | 00047 | 55FAAHH050 | WW GAS MONITOR | HIHI LEL ALM | | | D02-R01-S06-P15 | | | | | | | | | | | | | | | | | | 1110 | 0.400= | CCCAITOCO COL | MANAY OA O A CANTON | OOMMONIAL NA ACT | 1111 | | 55FAIT050_COK
55FAIT050_COA | WW GAS MONITOR | 1112
1113 | 04264 | DOFAITUOU_COA | WW GAS MONITOR |
COIVIIVION ALAKM | 1113 | 10177 | EEEVSUEUD | WW GAS MONITOR | VMTD TDDI | | | DOE DO4 COC DO4 | | | | | | | | | | | | | | | | | | 1115 | | 55FYS050B
55FYS050B_ALA | WW GAS MONITOR | | | | D05-R01-S06-P01 | | | | | | | | | | | | | | | | | | 1116 | | 55FYS050B_ALA
55FYS050B_ALH | WW GAS MONITOR | 1117 | | 55FYS050B_ALK | WW GAS MONITOR | 1118 | | 55FYA050B_ALK | WW GAS MONITOR | | | | D02-R01-S07-P01 | | | | | | | | | | | | | | | | | | 1119 | 222.10 | | | | | | 2021.01 007 101 | | | | | | | | | | | | | | | | | | 1120 | 00117 | 55FYL042 | PUMP STATION | ENTRY SAFE | | | D06-R01-S03-P05 | | | | | | | | | | | | | | | | | | 1121 | 1 | Fig. | | | | | | | | INPUT | REAL I/O | Ol | JTPUT | | PROCES | s c | CONFIG | PUMP | s | PUMP# | PUM | ИР#/ | PUMP | /VLV | TREN | рΤ | RUNTI | ME | | | |--|------|----------|-----------------|------------------|------------------|-------|-----|-------|------------------|---------------------------|--------------|-----|----------------------|--------------|-----------------------------------|-------------------------|----------------|--------------|------------------|-----------------------------|------|------|------|----|--------------|----------------|---------|----------| | TIME PART PART TIME PART | | | | = NOT APPLICABLE | E | | _ | | | | _ | | | | | | | DETAIL | | | | | | | | | | | | 1122 | | | | | | | | , | | or Panel ON or Ann. BLINK | % or Ann. UN | % | r ON
or ALM Blink | | % or ALM Blink
0% or ALM Solid | or ON
6 or ALM Blink | % or ALM Solid | or ALM Blink | o of Acivi Solid | r ALM Blink
or ALM Solid | | 9 | % | % | or ALM Blink | 6 or ALM Solid | | | | 1122 | ITEM | REGISTER | TAG | DES | CRIPTION | Range | 4 8 | 20 2 | SLOT-POINT | 20 % | 5 % | 3 6 | 20 % | <u>8</u> 9 | 9 2 | 20 % | 9 | 20 % | 2 8 | 10 20 | % 0 | 3 6 | 20 % | 9 | 20 % | 9 | COMMENT | SIGN-OFF | | 1122 19286 SPYPSTRO REC PM ACULT OX | 1100 | 10/ | | 5, 50 5,4 4 0,4 | 211 | ### 1925 ### 1959*1910 PATH ELD FIN ADUA RUNTINE CUMM IM50 | | | | | | | | | D05-R01-S05-P10 | 1126 4410 5579100 711 LEC NA ACU-1 NUMTHE CLAMA MOD | | 04266 | 55FYS160_ON | ELEC RM ACU-1 | ON | 11/26 44102 5575 10 11 11 11 11 11 11 1 | | 44404 | 555)/0400 DTM | EL EO DIA AOUL A | DUNTAE OUNDA NOD | 1127 44103 6597510, PTC LEC RM AULU RUNTHE PROY DAY 1128 44103 6597510, PTC LEC RM AULU RUNTHE PROY DAY 1130 1017 (65975108) ELEC RM AULU RUNTHE PROY DAY 1131 1017 (65975108) ELEC RM AULU RUNTHE PROY DAY 1132 Quaz 75975108, ALL ELEC RM AULU RUNTHE PROY DAY 1133 02150 65975108, ALL ELEC RM AULU RUNTHE PROY DAY 1136 10190 65975108 LEC RM AULU RUNTHE PROY DAY 1137 Quaz 65975109, ALL ELEC RM AULU RUNTHE PROY DAY 1138 10490 6597510, CLEC RM AULU RUNTHE PROY DAY 1139 4100 (6597510, PTM LEC RM AULU RUNTHE PROY DAY 1140 44107 (6597510, PTM LEC RM AULU RUNTHE PROY DAY 1141 44107 (6597510, PTM LEC RM AULU RUNTHE PROY DAY 1144 4107 (6597510, PTM LEC RM AULU RUNTHE PROY DAY 1144 4107 (6597510, PTM LEC RM AULU RUNTHE PROY DAY 1144 4107 (6597510, PTM LEC RM AULU RUNTHE PROY DAY 1144 4107 (6597510, PTM LEC RM AULU RUNTHE PROY DAY 1144 4107 (6597510, PTM LEC RM AULU RUNTHE PROY DAY 1144 4107 (6597510, PTM LEC RM AULU RUNTHE PROY DAY 1145 QUAR 6597510, RTR LEC RM AULU RUNTHE PROY DAY 1146 QUAR 6597510, RTR LEC RM AULU RUNTHE PROY DAY 1146 QUAR 6597510, ALL LEC RM AULU RUNTHE PROY DAY 1147 QUAR 6597510, ALL LEC RM AULU RUNTHE PROY DAY 1149 QUAR 6597510, ALL LEC RM AULU RUNTHE PROY DAY 1149 QUAR 6597510, ALL LEC RM AULU RUNTHE PROY DAY 1149 QUAR 6597510, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 6597510, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 6597510, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM AULU RUNTHE PROY DAY 1150 QUAR 65975100, ALL LEC RM A | _ | | | | | | | | 1128 | | | | _ | 1120 02.157 557Y5160B ELEC RIA ACLI RUITINE RESET | 1131 1017 587YS1688 | 1111 1017 SSFYS108 ELEC RM ACUL TROUBLE ALARM 1112 Dazis SSFYS108 ALB ELEC RM ACUL TROUBLE ALARM 1113 Dazis SSFYS108 ALB ELEC RM ACUL ALARM ACK HIM 1114 Dazis SSFYS108 ALB ELEC RM ACUL ALARM ACK HIM 1115 Dazis SSFYS108 ALB ELEC RM ACUL ALARM ACK HIM 1115 Dazis SSFYS108 ALB ELEC RM ACUL ALARM ACK HIM 1115 Dazis SSFYS108 ALB ELEC RM ACUL DA ALARM ACK HIM Dazis SSFYS108 ALB ELEC RM ACUL DA ALARM ACK HIM Dazis SSFYS108 ALB ELEC RM ACUL DA ALARM ACK HIM Dazis SSFYS108 ALB ELEC RM ACUL RUTHER CUMM ISD DAZIS SSFYS108 ALB ELEC RM ACUL RUTHER CUMM ISD DAZIS SSFYS108 ALB ELEC RM ACUL RUTHER CUMM ISD DAZIS SSFYS108 ALB ELEC RM ACUL RUTHER CUMM ISD DAZIS SSFYS108 ALB ELEC RM ACUL RUTHER RESET ALARM ACK HIM DAZIS SSFTS106 ALB ELEC RM ACUL ALARM ACK HIM DAZIS SSFTS108 ALB ELEC RM ACUL ALARM ACK HIM DAZIS SSFTS108 ALB ELEC RM ACUL ALARM ACK HIM DAZIS SSFTS108 ALB ELEC RM ACUL ALARM ACK HIM DAZIS SSFTS108 ALB ELEC RM ACUL ALARM ACK HIM DAZIS SSFTS108 ALB ELEC RM ACUL ALARM ACK HIM DAZIS SSFTS108 ALB ELEC RM ACUL ALARM ACK HIM DAZIS SSFTS108 ALB ELEC RM ACUL ALARM ACK HIM DAZIS SSFTS108 ALB ELEC RM ACUL ALARM ACK HIM DAZIS SSFTS108 ALB ELEC RM ACUL ALARM ACK HIM DAZIS SSFTS108 ALB ELEC RM ACUL ALARM ACK HIM DAZIS SSFTS108 AL | | 02157 | 00F1910U_KIK | ELEC KW ACU-1 | KUNTIME KESET | 1133 | | 10171 | 55EV\$160P | FLEC RM ACU 1 | TPOLIBLE | | | | DOE DO1 COE D14 | 1133 | | | | | | | | | D05-R01-S05-P11 | 1136 04208 55FY9102 ALK ELEC RM ACU-1 ALARM ACK 1137 0+200 55FY9102 CM ELEC RM ACU-2 ON D05-R01-S07-P06 1138 | | | _ | 1135 | 1136 10198 55FY5182 ELEC RM ACU-2 ON 1137 | | 04200 | 331 13100B_ALIX | LLLC KW ACO-1 | ALARINI ACIT | 1137 | | 10198 | 55EVS162 | FLEC RM ACU-2 | ON | | | | D05_R01_S07_R06 | 1138 | | | | | | | | | D03-101-307-F00 | 1139 | | 04203 | 001 10102_014 | LLLO TIWI 7100-2 | OIY | 1140 | | 44165 | 55FYS162 RTM | FLEC RM ACU-2 | RUNTME CUMM MSD | 1141 | 1142 | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | 1143 | 1144 | 1145 10199 55FYS162B | | JE 100 | 1146 04270 55FYS162B_ALA ELEC RM ACU-2 TROUBLE ALARM | | 10199 | 55FYS162B | ELEC RM ACU-2 | TROUBLE | | | | D05-R01-S07-P07 | 1147 02158 55FYS162B_ALH ELEC RM ACU-2 ALARM ACK HMI 1148 04271 55FYS162B_ALK ELEC RM ACU-2 ALARM
ACK 1149 | | | | | | | | | 230 101 001 1 01 | 1148 0427 55FYS162B_ALK ELEC RM ACU-2 ALARM ACK 1149 | 1149 | 1150 00058 55FYA160B ELEC RM ACU TROUBLE ALM D02-R01-S07-P10 D05-R01-S07-P10 D05-R01-S | | 1 | 1151 | | 00058 | 55FYA160B | ELEC RM ACU | TROUBLE ALM | | | | D02-R01-S07-P10 | 1152 10186 55FTSH064 ELEC RM HI TMP D05-R01-S06-P10 | | | | | | | | | .= 200 | 1153 04272 55FTSH064_ALA ELEC RM HI TMP ALARM 1154 02160 55FTSH064_ALH ELEC RM ALARM ACK HMI 1155 04273 55FTSH064_ALK ELEC RM ALARM ACK 1156 00057 55FTAH064 ELEC RM HI TMP ALM D02-R01-S07-P09 D02-R01-S07-P09 | | 10186 | 55FTSH064 | ELEC RM | HI TMP | | | | D05-R01-S06-P10 | 1154 02160 55FTSH064_ALH ELEC RM ALARM ACK HMI Image: Control of the | 1155 04273 55FTSH064_ALK ELEC RM ALARM ACK ELEC RM HI TMP ALM D02-R01-S07-P09 | 1156 00057 55FTAH064 ELEC RM HI TMP ALM D02-R01-S07-P09 D02-R0 | | | | _ | D02-R01-S07-P09 | 1157 | 1157 | = NOT APPLICABLE | <u> </u> | | | FIELD | | | | - | | | | | | | | | | | | | | | | |--------------|---------|----------------------------------|-----------------------------|----------------------------|-------|---------------|-------|--------------------------|---------|------------------------------------|-------|---|---------------|---------|---|------------------------------|--------|---------------------------------------|------|------|-----------|----|----------------------------|-----|---------|----------| | | | | | | | | IILLD | | LCP | LCPA\I | FIELD | OVERVIEW | ' | G | GROUP A/M | DETA | AL. | VLV A/M | TUNI | NG | | | OR S | UM. | | | | ITEM RE | EGISTER | TAG | DESC | CRIPTION | Range | ALARM SUMMARY | | DROP-RACK-
SLOT-POINT | Panel (| 100% or Ann. ON
0% or ON
50% | 。 % | 0% or ON
50% or ALM Blink
100% or ALM Solid | ON
r ALM E | oor ALN | 0% or ON
50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink | or ALN | 50% or ALM Blink
100% or ALM Solid | %0 | 100% | %0
50% | ્ર | 0% or ON 50% or AI M Rlink | 5 0 | COMMENT | SIGN-OFF | | 1450 | 1158 | | 55FZSC126 | CKT BKR UTIL | CLOSED | | | | D05-R01-S05-P14 | 1159 | 04274 | 55FZSC126_STA | CKT BKR UTIL | CLOSED | - | | | | 1160 | 40400 | ======= | OUT BUT ALLEY | 0,0055 | | _ | | | | | | | | | | | | | | | | | | +- | | | | 1161 | | 55FZSC126A | CKT BKR MAIN | CLOSED | | | | D05-R01-S06-P14 | | | | | | - | | | | | | | | | | +- | | | | 1162 | 04275 | 55FZSC126A_STA | CKT BKR MAIN | CLOSED | - | | | | 1163 | 40475 | FFF700400 | OKT DKD MOO A | OL OOFD | | | | Doc Dot 005 Dis | | | | | | | | | | | | | | | | + | | | | 1164
1165 | | 55FZSC129
55FZSC129_STA | CKT BKR MCC A CKT BKR MCC A | CLOSED
CLOSED | | | | D05-R01-S05-P15 | | | | | - | | | | | | | | | - | | + | | | | 1166 | 04270 | 33FZ3C129_31A | CKT BKK WCC A | CLUSED | 1167 | 10191 | 55FZSC130 | CKT BKR MCC B | CLOSED | | | | D05-R01-S06-P15 | | | | | | ++ | | | | | | _ | | | | + | | | | 1168 | | | CKT BKR MCC B | CLOSED | | | | D03-101-300-F13 | 1169 | J.E. | <u></u> | 2 2 | 32322 | 1170 | 10194 | 55FHS126B | ATS | AUTO | | | | D05-R01-S07-P02 | 1171 | | 55FHS126B_STA | ATS | AUTO | | | | 200 110 1 001 1 02 | 1172 | 1173 | 10195 | 55FYS126B | ATS | STANDBY | | | | D05-R01-S07-P03 | 1174 | | 55FYS126B_STA | ATS | STANDBY | 1175 | | _ | 1176 | 10196 | 55FESL126 | ATS BUS DPN-A | UNDER VOLT | | | | D05-R01-S07-P04 | 1177 | | 55FESL126_ALA | ATS BUS DPN-A | UNDER VOLT ALM | 1178 | 02173 | 55FESL126_ALH | ATS BUS DPN-A | ALARM ACK HMI | 1179 | 04305 | 55FESL126_ALK | ATS BUS DPN-A | ALARM ACK | 1180 | 1181 | 10187 | 55FYS060J | UPS BYPASS | ON | | | | D05-R01-S06-P11 | 1182 | | 55FYA060J | UPS BYPASS | ON ALM | | | | D02-R01-S08-P03 | 1183 | | 55FYS060J_ALA | UPS BYPASS | ON ALARM | 1184 | | 55FYS060J_ALH | UPS BYPASS | ALARM ACK HMI | 1185 | 04281 | 55FYS060J_ALK | UPS BYPASS | ALARM ACK | + | | | | 1186 | - | | | | 1187 | | 55FJSL060J | UPS ACLINE | TROUBLE ALADM | | | | D05-R01-S06-P12 | 1188 | | 55FJSL060J_ALA | | TROUBLE ALARM | 1189
1190 | | 55FJSL060J_ALH
55FJSL060J_ALK | UPS AC LINE
UPS AC LINE | ALARM ACK HMI
ALARM ACK | 1190 | 04219 | JOI-JOLUUUJ_ALK | OF S AC LINE | ALAININ AUN | 1191 | 10173 | 55FYS060B | UPS INVERTER | TROUBLE | | | | D05-R01-S05-P13 | 1193 | | 55FYA060B | UPS | TROUBLE ALM | | | | D03-R01-S03-P13 | 1193 | | 55FYS060B_ALA | UPS INVERTER | TROUBLE ALARM | | | | 502-101-000-104 | 1195 | | 55FYS060B_ALH | UPS INVERTER | ALARM ACK HMI | 1196 | | 55FYS060B_ALK | UPS INVERTER | ALARM ACK | 1197 | 1198 | 10189 | 55FESL060 | UPS BATTERY | LOW | | | | D05-R01-S06-P13 | 1199 | | 55FEAL060 | UPS BATTERY | LOW ALM | | | | D02-R01-S08-P05 | 1200 | 04284 | 55FESL060_ALA | UPS BATTERY | LO ALARM | 1201 | 02164 | 55FESL060_ALH | UPS BATTERY | ALARM ACK HMI | 1202 | 04285 | 55FESL060_ALK | UPS BATTERY | ALARM ACK | 1203 | _ | | | | | | | | |--------------|----------|----------------------------------|----------------------------------|-----------------------|-------|------------|--------------------------|-------------------------------------|-----------------|--------|------------------|---------------------------------------|-------|---------------------------------------|---|--------|--------------|---|-----|-------------|-----------|----|------|---------------------------------------|---------|----------| | | | | | | | INPUT | REAL I/O | | OUTPU | | | OCESS | | NFIG | PUMPS | PUM | | PUMP # / | | P/VLV | TRE | ND | | TIME | | 1 | | | | | = NOT APPLICABLI | E | |
FIELD | | LCP | LC | PA\FIE | LD OVE | ERVIEW | | | GROUP A/M | и DET/ | AIL | VLV A/M | TUN | IING | | _ | OR S | SUM. | | 1 | | ITEM | REGISTEI | R TAG | DES | CRIPTION | Range | 50%
50% | DROP-RACK-
SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK | 100% or Ann. ON | 5 | 100%
0% or ON | 50% or ALM Blink
100% or ALM Solid | or ON | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | | 0% or ALM Sc | 0% or ON
50% or ALM Blink
100% or ALM Solid | %0 | 50%
100% | %0
80% | % | ō, | 50% or ALM Blink
100% or ALM Solid | COMMENT | SIGN-OFF | | 4004 | | 1 101 000 | | TD 01 ID1 5 | 1204 | | 1 55FJSL068 | INST PWR LCP | TROUBLE | | | D02-R01-S03-P11 | | | | | | | | | | _ | | | | | _ | | | | | | 1205 | | 55FJSL068_ALA | INST PWR LCP | TROUBLE ALARM | | | | | | | | | | | | | + | | | | | | | | | | | 1206 | | 5 55FJSL068_ALH | INST PWR LCP | ALARM ACK HMI | | | | | | | | | | | | | + | | | | | | | | | | | 1207 | | 7 55FJSL068_ALK | INST PWR LCP | ALARM ACK | | | D00 D04 000 D00 | | | | | | | | | | + | | | | | | | | | | | 1208 | 0007 | 2 55FJAL068 | INST PWR LCP | TROUBLE ALM | | | D02-R01-S08-P08 | | | | | | | | | | + | | | | | | | | | | | 1209 | 1000 | E EEE ISI OGOA | INST DWD DIO A | TDOLIDI E | | | D00 D04 007 D05 | | | | | | | | | | + | | | + | | | | | | | | 1210
1211 | | 5 55FJSL068A
8 55FJSL068A_ALA | INST PWR RIO A
INST PWR RIO A | TROUBLE TROUBLE ALARM | | | D03-R01-S07-P05 | 1212 | | 6 55FJSL068A_ALH | INST PWR RIO A | ALARM ACK HMI | | | | | | | | | | | | | + | | | | | | | | | | | 1213 | | 9 55FJSL068A_ALK | INST PWR RIO A | ALARM ACK | 1213 | | 3 55FJAL068A | INST PWR RIO A | TROUBLE ALM | | | D02-R01-S08-P09 | 1215 | 0007 | J JJI JALUUUA | INSTI WICKIOA | TROOBLE ALW | | | D02-R01-306-P09 | | | | |
| | | | | + | | | _ | | | | | | | | 1216 | 1017 | 2 55FJSL068B | INST PWR RIO B | TROUBLE | | | D05-R01-S05-P12 | | | | | | | | | | + | | | | | | | | | | | 1217 | | 0 55FJSL068B_ALA | INST PWR RIO B | TROUBLE ALARM | | | D03-101-303-F12 | | | | | | | | | | + | | | | | | | | | | | 1218 | | 7 55FJSL068B_ALH | INST PWR RIO B | ALARM ACK HMI | 1219 | | 1 55FJSL068B_ALK | INST PWR RIO B | ALARM ACK | 1220 | | 4 55FJAL068B | INST PWR RIO B | TROUBLE ALM | | | D02-R01-S08-P10 | 1221 | 0001 | TOOT OF NEODOLD | INCT I WITHOU | THOOBEL ALM | | | D02-101-000-1 10 | 1222 | 1022 | 5 55FTSH084 | GEN RM | HI TMP | | | D05-R01-S09-P01 | 1223 | | 6 55FTSH084_ALA | GEN RM | HI TMP ALARM | | | 200 101 200 101 | 1224 | | 4 55FTSH084_ALH | GEN RM | ALARM ACK HMI | 1225 | | 7 55FTSH084_ALK | GEN RM | ALARM ACK | 1226 | | 6 55FTAH084 | GEN RM | HI TMP ALM | | | D02-R01-S08-P02 | 1227 | 1228 | 1022 | 7 55FISH084 | GEN RM EF3 | OVERLOAD | | | D05-R01-S09-P03 | 1229 | 0430 | 9 55FISH084_ALA | GEN RM EF3 | OVERLOAD ALARM | 1230 | 0217 | 6 55FISH084_ALH | GEN RM EF3 | ALARM ACK HMI | 1231 | 0431 | 0 55FISH084_ALK | GEN RM EF3 | ALARM ACK | 1232 | 0006 | 1 55FYA084B | GEN RM EF3 | TROUBLE ALM | | | D02-R01-S07-P13 | 1233 | 1234 | | 6 55FYS084 | GEN RM EF3 | ON | | | D05-R01-S09-P02 | 1235 | | 8 55FYS084_ON | GEN RM EF3 | ON | 1236 | 4416 | 9 55FYS084_SYM | GEN RM EF3 | SYMBOL DISPLAY | 1237 | 1238 | | 0 55FYS084_RTM | GEN RM EF3 | RUNTME CUMM MSD | 1239 | | 1 55FYS084_RTL | GEN RM EF3 | RUNTME CUMM LSD | 1240 | | 2 55FYS084_RTC | GEN RM EF3 | RUNTME CURR DAY | 1241 | | 3 55FYS084_RTP | GEN RM EF3 | RUNTME PREV DAY | 1242 | 0217 | 5 55FYS084_RTR | GEN RM EF3 | RUNTIME RESET | 1243 | IN | PUT REAL I/O | | DUTPUT | | ROCESS | CONFIG | | PUMPS | PUMP# | PUMP#/ | PUMI | | TREN | ND | RUNT | | | | |--------------|--------|--------------------------------------|-----------------|----------------------------|-------|---------------------------|--------------------------------|---------|------------------------------------|---------|---------|--------|-------------------------------|---------------------------------------|---|---------|------|-------------|-----------|----------|-------------------------------|----------|---------|----------| | | | | = NOT APPLICABL | E | | FI | ELD | LCP | LCPA\F | FIELD O | VERVIEW | / | GR | OUP A/M | DETAIL | VLV A/M | TUN | NING | | | OR S | UM. | | | | ITEM R | EGISTE | R TAG | DES | SCRIPTION | Range | ALARM SUMMARY
0% or ON | % DROP-RACK-
G P SLOT-POINT | Panel C | 100% or Ann. ON
0% or ON
50% | 100% | _ | | 100% or ALM Solid
0% or ON | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | 0 5 5 | | 50%
100% | 0%
50% | 100% | 0% or ON
50% or Al M Blink | % or ALN | COMMENT | SIGN-OFF | 1244 | | 13 55FHS080B | GEN | AUTO | | | D05-R01-S08-P05 | | | | | | | | | | | | | | | | | | | 1245 | 0431 | 11 55FHS080B_STA | GEN | AUTO | 1246 | 1247 | | 12 55FYS087 | GEN ENG | ON | | | D05-R01-S08-P04 | | | | | | | | | | | | | | | | | | | 1248
1249 | 0431 | 12 55FYS087_ON | GEN ENG | ON | | | | | | | | | _ | | | | | | | \vdash | | | | | | 1250 | 4417 | 76 55FYS087_RTC | GEN ENG | RUNTME CURR DAY | 1251 | | 75 55FYS087_RTL | GEN ENG | RUNTME CUMM LSD | 1252 | | 74 55FYS087_RTM | GEN ENG | RUNTME CUMM MSD | 1253 | | 77 55FYS087_RTP | GEN ENG | RUNTME PREV DAY | 1254 | | 77 55FYS087_RTR | GEN ENG | RUNTIME RESET | 1255 | 1256 | 1021 | 14 55FYS087K | GEN ENG | OVERCRANK | | | D05-R01-S08-P06 | | | | | | | | | | | | | | | | | | | 1257 | 0431 | 13 55FYS087K_ALA | GEN ENG | OVERCRANK ALARM | 1258 | 0217 | 78 55FYS087K_ALH | GEN ENG | ALARM ACK HMI | 1259 | 0431 | 14 55FYS087K_ALK | GEN ENG | ALARM ACK | 1260 | 1261 | | 15 55FYS080K | GEN | COM SHUTDN | | \vdash | D05-R01-S08-P07 | | | | | | _ | | | | | | | | | | | | | 1262 | | 15 55FYS080K_ALA | GEN | COM SHUTDN ALM | | | | | | + | | | _ | | | | | | | | | | | | | 1263
1264 | | 79 55FYS080K_ALH
16 55FYS080K_ALK | GEN
GEN | ALARM ACK HMI
ALARM ACK | | | | | | | | | - | | | | | | | \vdash | | | | | | 1265 | | 64 55FYA080B | GEN | TROUBLE ALM | | | D02-R01-S07-P16 | | | | | | | | | | | | | | | | | | | 1266 | 0000 | 54 551 TA000B | OLIV | TROOBLE ALW | | | D02-R01-307-P10 | | | ++ | | | | | | | | | | | | | | | | 1267 | 1021 | 16 55FYS087B | GEN MECH | TROUBLE | | | D05-R01-S08-P08 | | | | | | | | | | | | | | | | | | | 1268 | | 17 55FYS087B_ALA | GEN MECH | TROUBLE ALM | 1269 | | 30 55FYS087B_ALH | GEN MECH | ALARM ACK HMI | 1270 | 0431 | 18 55FYS087B_ALK | GEN MECH | ALARM ACK | 1271 | 1272 | | 17 55FTSH181 | GEN STATOR | HI TMP | | | D05-R01-S08-P09 | | | | | | | | | | | | | | | | | | | 1273 | | 19 55FTSH181_ALA | GEN STATOR | HI TMP ALARM | 1274 | | 31 55FTSH181_ALH | | ALARM ACK HMI | 1275 | 0432 | 20 55FTSH181_ALK | GEN STATOR | ALARM ACK | | | | | | | | | _ | | | | | | | - | | | | | | 1276
1277 | 1021 | 18 55FZSC080A | GEN CKT BKR | CLOSED | | | DOE DO4 000 D40 | | | | | | _ | | | | | | | \vdash | | | | | | 1278 | | 21 55FZSC080A_STA | GEN CKT BKR | CLOSED | | | D05-R01-S08-P10 | | | | | | _ | | | | | | | \vdash | | | | | | 1279 | 0402 | 210012000001_0171 | OLIV OKT BIKK | OLOGED | 1280 | 1021 | 19 55FISH080A | GEN CKT BKR | TRIPPED | | | D05-R01-S08-P11 | | | | | | | | | | | | | | | | | | | 1281 | | 22 55FISH080A_ALA | GEN CKT BKR | TRIPPED ALARM | 1282 | 0218 | 32 55FISH080A_ALH | GEN CKT BKR | ALARM ACK HMI | 1283 | 0432 | 23 55FISH080A_ALK | GEN CKT BKR | ALARM ACK | 1284 | 1285 | | 09 55FLSH091 | GEN TANK | LEAK | | | D05-R01-S08-P01 | | | | | | | | | | | | | | | | | | | 1286 | | 24 55FLSH091_ALA | GEN TANK | LEAK ALARM | 1287 | | 33 55FLSH091_ALH | GEN TANK | ALARM ACK HMI | 1288 | 0432 | 25 55FLSH091_ALK | GEN TANK | ALARM ACK | 1289 | 1004 | 10 55FESL083 | GEN BATT | LOVOLT | | | D05 D04 000 D00 | | | | | | | | | | | | | | | | | | | 1290
1291 | | 26 55FESL083_ALA | GEN BATT | LO VOLT
LO VOLT ALARM | | | D05-R01-S08-P02 | | | | | | | | | | | | | | | | | | | 1291 | | 34 55FESL083_ALA | GEN BATT | ALARM ACK HMI | | | | | | | | | | | | | | | | | | | - | | | 1293 | | 27 55FESL083_ALK | GEN BATT | ALARM ACK | 1294 | 2.02 | 1 | 1 | INPL | | | OUTPUT | | PROCESS | CONFIG | | PUMPS | PUMP# | PUMP#/ | PUMF | | TREN | ND | RUNTIM | | | |--------------|--------|--------------------------------------|----------------------|-------------------------------|-------|----------------------------------|------------------------------------|-------------------------------------|-----------------------------|-------------|------------------------------|--------|-------------------------------|----------|---|---|------|-------------|------|----------|------------------------------|---------|----------| | | | | = NOT APPLICABLE | | | FIEL | .D | LCP | LCPA | 4\FIELD | OVERVIEW | / | GR | OUP A/M | DETAIL | VLV A/M | TUN | IING | | | OR SUM | _ | | | ITEM R | EGISTE | R TAG | DESC | RIPTION | Range | ALARM SUMMARY
0% or ON
50% | % DROP-RACK-
O SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK | 100% or Ann. ON
0% or ON | 50%
100% | 0% or ON
50% or ALM Blink | | 100% or ALM Solid
0% or ON | % % | 0% or ON
50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | | 50%
100% | 90% | 100% | 0% or ON
50% or ALM Blink |
COMMENT | SIGN-OFF | 1295 | | 11 55FYS083B | GEN BATT CHRG | TROUBLE | | | D05-R01-S08-P03 | | | | | | | | | | | | | | | | | | 1296 | | 28 55FYS083B_ALA | GEN BATT CHRG | TROUBLE ALARM | 1297 | | 85 55FYS083B_ALH | GEN BATT CHRG | ALARM ACK HMI | | | | | | | | | | \vdash | | | | | | | | | | | 1298 | 0432 | 29 55FYS083B_ALK | GEN BATT CHRG | ALARM ACK | | | | | | | | | | \vdash | | | | | | | | | | | 1299
1300 | 0422 | 30 55FGEN080_COA | GEN | COMMON ALARM | | + | | | | | | | | ++ | | | | _ | | \vdash | | | | | 1301 | | 31 55FGEN080_COK | GEN | COMMON ALM ACK | 1302 | 0400 | 010010E11000_0011 | CLIV | COMMONATION | | | | | | | | | | + | | | | | | | | | | | 1303 | 0438 | 87 55FGEN080_ALM | GEN | COMM FAIL ALARM | 1304 | 1305 | 3002 | 20 55FIT080A | GEN | PHASE A AMPS | | | D06-R01-S07-P02 | | | | | | | | | | | | | | | | | | 1306 | 4417 | 78 55FIT080A_CUR | GEN | PHASE A AMPS | 1307 | 3003 | 30 55FIT080B | GEN | PHASE B AMPS | | | D06-R01-S08-P03 | | | | | | | | | | | | | | | | | | 1308 | 4417 | 79 55FIT080B_CUR | GEN | PHASE A AMPS | 1309 | 3002 | 21 55FIT080C | GEN | PHASE C AMPS | | | D06-R01-S07-P03 | | | | | | | | | | | | | | | | | | 1310 | 4418 | 80 55FIT080C_CUR | GEN | PHASE A AMPS | 1311 | 1312 | | 29 55FLIT090 | GEN TANK | LEVEL | | + | D06-R01-S08-P02 | | | | | | | \vdash | | | | | | | | | | | 1313 | | 81 55FLIT090_LVL | GEN TANK | LEVEL | | | 500 504 600 500 | | | | | | _ | \vdash | | | | | | | | | | | 1314
1315 | 4002 | 22 55FLI090 | GEN TANK | LEVEL | | + | D06-R01-S09-P02 | | | | | | - | ++ | | | | _ | | \vdash | | | | | 1316 | 4206 | 63 55FLIT090_HHS | GEN TANK | HIHI LVL SET | | | | | | | | | | | | | | _ | | \vdash | | | | | 1317 | | 82 55FLIT090_HHP | GEN TANK | HIHI LVL SP | 1318 | | 32 55FLIT090_HHA | GEN TANK | HIHI LVL ALM | 1319 | | 86 55FLIT090_HHH | GEN TANK | HIHI LVL ACKHMI | 1320 | | 33 55FLIT090_HHK | GEN TANK | HIHI LVL ALMACK | 1321 | 1322 | | 64 55FLIT090_HS | GEN TANK | HI LVL SET | 1323 | | 83 55FLIT090_HP | GEN TANK | HI LVL SP | 1324 | | 34 55FLIT090_HA | GEN TANK | HI LEVEL ALM | 1325 | | | GEN TANK | HI LVL ACKHMI | | | | | | | | | | \vdash | | | | _ | | - | | | | | 1326
1327 | | 35 55FLIT090_HK
62 55FLAH090 | GEN TANK
GEN TANK | HI LVL ALMACK
HI LEVEL ALM | | + | D00 D04 007 D44 | | | | | | | ++ | | | | _ | | \vdash | | | | | 1328 | | 18 55FLAH090A | GEN TANK | HI LEVEL ALM | | | D02-R01-S07-P14
D06-R01-S03-P06 | | | | | | | | | | | | | | | | | | 1329 | 0011 | 10 001 27 11 10007 1 | OLIV ITALIA | THEEVEL / LEW | | | D00-101-303-1 00 | | | | | | | | | | | | | | | | | | 1330 | 4206 | 65 55FLIT090_LS | GEN TANK | LO LVL SET | 1331 | | 84 55FLIT090_LP | GEN TANK | LO LVL SP | 1332 | 0433 | 36 55FLIT090_LA | GEN TANK | LO LVL ALM | 1333 | 0218 | 88 55FLIT090_LH | GEN TANK | LO LVL ACKHMI | 1334 | | 37 55FLIT090_LK | GEN TANK | LO LVL ALMACK | 1335 | 0006 | 63 55FLAL090 | GEN TANK | LO LEVEL ALM | | | D02-R01-S07-P15 | | | | | | | | | | | | | | | | | | 1336 | | | 051154111 | 1337 | | 66 55FLIT090_LLS | GEN TANK | LOLO LVL SET | 1338
1339 | | 85 55FLIT090_LLP
38 55FLIT090_LLA | GEN TANK
GEN TANK | LOLO LVL SP
LOLO LVL ALM | | ++- | | | | | | | | | | | | | | | | | | | 1339 | | 89 55FLIT090_LLA | GEN TANK | LOLO LVL ACKHMI | 1341 | | 39 55FLIT090_LLK | GEN TANK | LOLO LVL ALMACK | 1342 | 2.30 | 1343 | 0434 | 40 55FLIT090_COA | GEN TANK | COMMON ALARM | 1344 | | 41 55FLIT090_COK | GEN TANK | COMMON ALM ACK | 1345 | INPUT | REAL I/O | | TPUT | | PROCES | | CONFIG | PU | JMPS | PUMP# | PUMP#/ | PUMF | P/VLV | TRE | ND | RUNT | ME | <u> </u> | | |------------|---------|------------------------------------|------------------|---------------------------|-------|---|----------------|-------------------|--|------|-------------|---------------|-------------------------------|--------|-------------------------------|---------------------------------------|---|---------------------------------|------|-------------|-----------|------|------------------------------|-------------------|----------|-----------| | | | | = NOT APPLICABLE | | | | FIELD | | LCP | LCPA | \\FIELD | OVERVIE | W | | GRO | UP A/M | DETAIL | VLV A/M | TUN | IING | | | OR SI | M. | | | | ·FM F | REGISTE | ER TAG | DESC | CRIPTION | Range | | % or ON
50% | SLOT-POINT | 0% or Panel ON
50% or Ann. BLINK
100% or Ann. ON | Z O | 50%
100% | ON
r ALM E | 100% or ALM Solid
0% or ON | , 0 | 100% or ALM Solid
1% or ON | 50% or ALM Blink
100% or ALM Solid | 0% or ON
50% or ALM Blink
100% or ALM Solid | or ON
6 or ALM B
8 or ALM | %0 | 50%
100% | J%
50% | 100% | 0% or ON
50% or ALM Blink | 100% or ALM Solid | COMMENT | SIGN-OFF | | | | 17.0 | 523 | 11011 | rungo | | <u>U 47</u> | (020110111 | <u> </u> | | 47 (| U 47 | Ì | , 4, , | , J | 47 , | U W | U W | , | ., | <u> </u> | | <u> </u> | , | 0011111 | 5.6.7 6.1 | | 346 | 1019 | 93 55FJSL039 | PUMP STATION | POWER FAIL | | | | D05-R01-S07-P01 | 347 | 0429 | 92 55FJSL039_ALA | PUMP STATION | POWER FAIL ALM | 348 | | 68 55FJSL039_ALH | PUMP STATION | ALARM ACK HMI | 349 | 0429 | 93 55FJSL039_ALK | PUMP STATION | ALARM ACK | 350 | 351 | 0438 | 82 55FPMON039_ALM | POWER MONITOR | COMM FAIL ALARM | 352 | 353 | 4418 | 87 55FEIT039_VLT | POWER MONITOR | VOLTS | 354 | | 88 55FIIT039_AMP | POWER MONITOR | AMPS | 355 | | 89 55FJIT039_KW | POWER MONITOR | KILOWATTS | 356 | | 90 55FQJIT039_KWM | POWER MONITOR | KILOWATT-HR MSD | 357 | | | POWER MONITOR | KILOWATT-HR LSD | 358 | | 92 55FQJIT039A_KVM | | KILOVAR-HR MSD | | | | | | | | | 4 | | | | | | | | | | | | | | | 359
360 | 4419 | 93 55FQJIT039A_KVL | POWER MONITOR | KILOVAR-HR LSD | 361 | 1008 | 86 55FZSC062 | ELECTRIC RM | INTRUSION | | | | D03-R01-S07-P06 | 362 | | 94 55FZSC062_ALA | ELECTRIC RM | INTRUSION ALARM | 363 | | 69 55FZSC062_ALH | ELECTRIC RM | ALARM ACK HMI | 364 | 0429 | 95 55FZSC062_ALK | ELECTRIC RM | ALARM ACK | 365 | 366 | | 87 55FZSC062A | DRYWELL | INTRUSION | | | | D03-R01-S07-P07 | 367 | | | DRYWELL | INTRUSION ALARM | | | | | | | | | | | | | | | | | | _ | | | | | | 368 | | | DRYWELL | ALARM ACK HMI | 369 | | | DRYWELL | ALARM ACK | 370 | 000 | 70 55FZA062A | DRYWELL | INTRUSION ALM | | | | D02-R01-S08-P06 | | | | | | | | | | | | | | - | | | | | | 371 | 1000 | 00 5557000000 | CEN DM | INTRUCION | | + | | D00 D04 007 D00 | | | | | | | | | | | | | | + | | | | | | 372
373 | | 88 55FZSC062C
98 55FZSC062C_ALA | GEN RM
GEN RM | INTRUSION INTRUSION ALARM | | _ | | D03-R01-S07-P08 | | | | | | | | | | | | | | + | | | | | | 374 | | | GEN RM | ALARM ACK HMI | | | | | | | | | | | | | | | | | | + | | | | | | 375 | | 99 55FZSC062C_ALK | | ALARM ACK | 376 | | 65 55FZA062C | GEN BUILDING | INTRUSION ALM | | | | D02-R01-S08-P01 | 377 | 000 | 00 001 21 10020 | CEIT BOILBIITO | III THOUSEN TEM | | | | D02-101-300-1 01 | 378 | 1008 | 89 55FZSC062B | EXTERNL PANELS | INTRUSION | | | | D03-R01-S07-P09 | 379 | | 00 55FZSC062B_ALA | EXTERNL PANELS | INTRUSION ALARM | | | | 200 1.01 001 1 00 | 380 | | 72 55FZSC062B_ALH | EXTERNL PANELS | ALARM ACK HMI | 381 | | 01 55FZSC062B_ALK | EXTERNL PANELS | ALARM ACK | 382 | | 71 55FZA062B | EXTERNL PANELS | INTRUSION ALM | | | | D02-R01-S08-P07 | 383 | 384 | 1000 | 01 55FHS037J | LCP PANEL | LAMP TEST | | | | D02-R01-S03-P01 | | | | | |
 | | | | | | | | | | | | | 385 | 386 | 000 | 76 55FYA079B | PLC | TROUBLE ALM | | | | D02-R01-S08-P12 | 387 | | 00.5551.070.074 | DUMP OTATION | OTATUO | 388
389 | 4418 | 86 55FU079_STA | PUMP STATION | STATUS | LOOP TAG | | REGISTE | R STAR | TING A | DDRESS | |--------|------------|--|--|----------------|------------------------|--------------------------|-------------|--------|---------------|----------------------------| | BLOCK | TEMPLATE | | | REGISTER | | EQUIPMENT NAME | DO DI | INT | AO | AI INT | | NUMBER | NAME | TEMPLATE PAGE TITLE DESCRIPTION | OD COMMENT | NUMBER | (DESC1) | (DESC2) | 02xxx 04xxx | 07xxx | 42xxx | 44xxx 47xxx | | | 0.1.0 | | | | | | | | | | | 1 | SWS-C08 | DIAGNOSTICS TEMPLATE LOGIC(SWS-C08 V2.41) | Combine the test push button with an off delay timer so that the te | 4 | 10EU079 | | 02001 04001 | 06001 | 42001 | 44001 46001 | | | | | logic remains on for a hard coded time delay once the Operator | L | | | | | | | | | | | releases the button. This coil is connected to each of the panel an | ı | | | | | | | | | | | annunciator lights to allow the operator to activate all PLC controlle | | | | | | | | | 2 | CUSTOM | CUSTOM LOGIC - LOCAL PANEL INPUTS TEST PUSH BUTTON | lights on the FCP panel by pressing the test push button. | 10254 | 10EHS037J | DIV FCP PANEL | | 07001 | | 47001 | | | | | 3 1 71 3 1 | | | | | | | | | | | DIVERSION BOX LEVELS, FLOWS AND POWER LOSS | | | | | | | | | | 3 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | Diversion Box Ultrasonic Fail | 10241 | 10EYS672B | DIV BOX SONIC | 02021 04021 | | | 47002 | | | | | Diversion Box Ultrasonic Level, use Ultrasonic Fail alarm for extern | | | | | | | | | 4 | SWS-C12A | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12A V1.30) | alarm input. | 30037 | 10ELIT672 | DIV BOX SONIC | 02022 04023 | 07003 | 42021 | 44021 47003 | | | | | Block move operator entered setpoints for Knott Valve positions fro | m | | | | | | | | 5 | CUSTOM | CUSTOM LOGIC - KNOTT VALVE POSITIONS FOR HOURS 0 - 15 | HMI input to output for hours 0 to 15. | | 10EVB671 | DIV KNOT VLV | | | 42025 | 44026 | | | OLIOTOM | OLIOTOM LOGIC TANOTT VALVE POOLTIONIC FOR HOURS 40, 00 | Block move operator entered setpoints for Knott Valve positions fro | m | 405)/0074 | DIVIONOTATIV | | | 40044 | 44040 | | 6 | CUSTOM | CUSTOM LOGIC - KNOTT VALVE POSITIONS FOR HOURS 16 - 23 | HMI input to output for hours 16 to 23. Copy hour from time of day clock to Table to Register Move index | | 10EVB671 | DIV KNOT VLV | | | 42041 | 44042 | | | | | register. Table to register move which transfers valve position to | | | | | | | | | | | | output register based on hour time of day (0 - 23) with top and mid | lle | | | | | | | | | | | inputs tied to power so instruction doesn't increment itself (change | | | | | | | | | 7 | CUSTOM | CUSTOM LOGIC - KNOTT TABLE TO REGISTER MOVE FOR AUTOMATIC CTRL | hours moves pointer). | | 10EVB671 | DIV KNOT VLV | | 07008 | | 47018 | | 8 | SWS-C15A | AUTO/MANUAL STATION TEMPLATE LOGIC(SWS-C15A V1.01) | Knott Valve | | 10EVA671 | DIV KNOT VLV | 02026 04033 | 07010 | 42049 | 44050 47020 | | | | | Knott Valve, modify so that loss of power (latched trouble alarm) de | | | | | | | | | | | | not close valve. Change Wait Mode BLKM so that Position Buffer | | | | | | | | | 9 | SWS-C06B | VALVE CONTROL, MODULATING TEMPLATE LOGIC(SWS-C06B V2.01) | feed back into itself instead of a value of 0. | 40019 | 10EFV671 | DIV KNOT VLV | 02028 04035 | 07012 | | 44052 47021 | | | | | Block move operator entered setpoints for Bushard Valve positions | | | | | | | | | 10 | CUSTOM | CUSTOM LOGIC - BUSHARD VALVE POSITIONS FOR HOURS 0 - 16 | from HMI input to output for hours 0 to 16. | | 10EVB676 | DIV BUSH VLV | | | 42050 | 44055 | | 11 | CUSTOM | CUSTOM LOGIC - BUSHARD VALVE POSITIONS FOR HOURS 17 - 23 | Block move operator entered setpoints for Bushard Valve positions from HMI input to output for hours 17 to 23. | | 10EVB676 | DIV BUSH VLV | | | 12066 | 44071 | | 11 | CUSTOW | COSTON LOGIC - BUSHARD VALVE POSITIONS FOR HOURS 17 - 23 | Copy hour from time of day clock to Table to Register Move index | | IUEVB070 | DIV BUSH VLV | | | 42000 | 44071 | | | | | register. Table to register move which transfers valve position to | | | | | | | | | | | | output register based on hour time of day (0 - 23) with top and mid | lle | | | | | | | | | | | inputs tied to power so instruction doesn't increment itself (change | | | | | | | | | 12 | CUSTOM | CUSTOM LOGIC - BUSHARD TABLE TO REGISTER MOVE TO AUTOMATIC CTRL | hours moves pointer). | | 10EVB676 | DIV BUSH VLV | | 07017 | | 47042 | | 13 | SWS-C15A | AUTO/MANUAL STATION TEMPLATE LOGIC(SWS-C15A V1.01) | Bushard Valve | | 10EVA676 | DIV BUSH VLV | 02033 04046 | 07019 | 42074 | 44079 47044 | | | | | Bushard Valve, modify so that loss of power (latched trouble alarm | | | | | | | | | | | | does not close valve. Change Wait Mode BLKM so that Position E | | | | | | | | | 14 | | VALVE CONTROL, MODULATING TEMPLATE LOGIC(SWS-C06B V2.01) | is feed back into itself instead of a value of 0. | 40021 | 10EFV676 | DIV BUSH VLV | 02035 04048 | | | 44081 47045 | | 15 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | Knott 1 Flow Transmitter Trouble, inhibit if Knott Valve is not open. | 10246 | 10EYS674B | DIV KNOT 1 FLO | 02040 04059 | | | 47066 | | | | | Knott 1 Flowmeter, inhibit Low and Low Low flow alarms when Kno | tt | | | | | | | | 16 | SWS-C12A | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12A V1.30) | Vavle is closed, use Tranmsitter Trouble Alarm for external alarm i | | 10EFIT674 | DIV KNOT 1 | 02041 04061 | 07026 | 42075 | 44084 47067 | | 17 | | TOTALIZER TEMPLATE LOGIC(SWS-C19 V1.11) | Knott 1 Flowmeter, inhibit when Knott Valve is not open. | 30040 | 10EFIT674 | DIV KNOT 1 | 02011 01001 | 07031 | 12070 | 44089 47082 | | 18 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | Knott 1 Level (from Flow Meter). | 30041 | 10ELIT674 | DIV KNOT 1 | | | | 44099 47108 | | 19 | SWS-C12C | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | Knott 1 Velocity (from Flow Meter). | 30042 | 10ESIT674 | DIV KNOT 1 | | | | 44100 47115 | | 20 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | Knott 2 Flow Transmitter Trouble, inhibit if Knott Valve is not open | 10261 | 10EYS675B | DIV KNOT 2 FLO | 02045 04071 | | | 47122 | | | | | V44 0 Fl | | | | | | | | | | 014/0 0404 | TRANSMITTER CIONAL C TEMPLATE LOCIO/CIA/O 0404 \/4 00\ | Knott 2 Flowmeter, inhibit Low and Low Low flow alarms when Kno | | 40000 | DIVIDATO | 00040 04070 | 07000 | 40070 | 44404 47400 | | 21 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12A V1.30) | Vavle is closed, use Tranmsitter Trouble Alarm for external alarm i | • | 10EFIT675 | DIV KNOT 2 | 02046 04073 | | 42079 | 44101 47123
44106 47138 | | 22 | | TOTALIZER TEMPLATE LOGIC(SWS-C19 V1.11) TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | Knott 2 Flowmeter, inhibit when Knott Valve is not open. Knott 2 Level (from Flow Meter). | 30049
30050 | 10EFIT675
10ELIT675 | DIV KNOT 2
DIV KNOT 2 | | 07037 | | 44106 47138
44116 47164 | | 23 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | Knott 2 Velocity (from Flow Meter). | 30052 | 10ELIT675 | DIV KNOT 2 | | | | 44117 47171 | | 25 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | Bushard Flow Transmitter Trouble, inhibit if Bushard Valve is not o | | 10ES11073 | DIV BUSH FLO | 02050 04083 | | | 47178 | | | 55 5121 | 2.232.2 51510.2 12.111 2.112 23 515(5175 5121 V 1.115) | Bushard Flowmeter, inhibit Low and Low Low flow alarms when | 10200 | .02100100 | 2 20011120 | 32333 04000 | | | 771110 | | | | | Bushard Vavle is closed, use Tranmsitter Trouble Alarm for extern | ı | | | | | | | | 26 | SWS-C12A | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12A V1.30) | alarm input. | 30047 | 10EFIT673 | DIV BUSH | 02051 04085 | 07038 | <u>420</u> 83 | 44118 47179 | | | | · · · · · · · · · · · · · · · · · · · | | * | | | ' | | | ' | | | | | | | | LOOP TAG | | R | EGISTE | R STARTING ADDI | RESS | | |-----------------|------------------|---|-----|--|-----------------|------------------------|----------------------------|-------------|-------------|--------------------------|--------|--------------| | BLOCK
NUMBER | TEMPLATE
NAME | TEMPLATE PAGE TITLE DESCRIPTION | MOD | COMMENT | REGISTER NUMBER | NUMBER
(DESC1) | EQUIPMENT NAME
(DESC2) | DO
02xxx | DI
04xxx | INT AO A 07xxx 42xxx 44x | | INT
I7xxx | | 27 | | TOTALIZER TEMPLATE LOGIC(SWS-C19 V1.11) | | Bushard Flowmeter, inhibit when Bushard Valve is not open. | 30047 | 10EFIT673 | DIV BUSH | | | 07043 44 | 123 4 | 17194 | | 28 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Bushard Level (from Flow Meter). | 30048 | 10ELIT673 | DIV BUSH | | | | 1133 4 | | | 29 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Bushard Velocity (from Flow Meter). | 30051 | 10ESIT673 | DIV BUSH | | | | 1134 4 | | | | | DIVERSION BOX CONTROLS | 30 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | |
Diversion Box Gas Monitor Trouble Alarm Diversion Box Gas Monitor Level inhibit Hi and HiHi when Trouble | 10242 | 10EYS677B | DIV BOX GAS | 02055 | 04095 | | | 47234 | | | | | | Alarm is active and deactivate Lo and LoLo Alarms, use Transmitter | | | | | | | | | | 31 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12A V1.30) | | Trouble Alarm for external alarm input. | 30038 | 10EAIT677 | DIV BOX GAS | | | 07044 42087 44 | | | | 32 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Diversion Box Electrical Room Hi Sump Level | 10247 | 10ELSH684 | DIV SUMP | 02060 | | | 2 | 47250 | | 33 | | CUSTOM LOGIC - SUPPLY FAN ON TO HMI | | Diversion Box Electrical Room Suppy Fan, send On signal to HMI. | 10248 | 10EYS691 | DIV SF1 | | 04109 | | | | | 34 | | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Diversion Box Electrical Room Supply Fan Runtime | 10248 | 10EYS691 | DIV SF1 | 02061 | | 07049 44 | 140 4 | | | 35 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Diversion Box Electrical Room Supply Fan Overload | 10249 | 10EISH691 | DIV SF1 | 02061 | 04110 | | | 47251 | | | | | | Diversion Box Electrical Room Supply Fan Low Flow, inhibit when | | | | | | | | | | 36 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Supply Fan is not On. | 10250 | 10EFSL692 | DIV SF1 | 02062 | | | | 47252 | | 37 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Diversion Box Electrical Room UPS Trouble | 10252 | 10EYS678B | DIV UPS | 02063 | | | | 47253 | | 38 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Diversion Box Electrical Room UPS AC Fail | 10262 | 10EJSL678 | DIV UPS AC | 02064 | | | | 47254 | | 39 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Diversion Box Electrical Room UPS Bypass Alarm | 10263 | 10EYS678J | DIV UPS BYPASS | 02065 | | | | 47255 | | 40 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Diversion Box Electrical Room UPS Low Battery | 10264 | 10EESL678 | DIV UPS BATT | 02066 | 04120 | | | 47256 | | | | | | Diversion Box Electrical Room LCP Panel Instrument Power Supply | | | | | | | | | | 41 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Trouble | 10265 | 10EJSL687 | DIV INST POWER | 02067 | | | | 47257 | | 42 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Diversion Box Electrical Room Power Fail | 10253 | 10EYS695 | DIV | 02068 | | | | 47258 | | 43 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Diversion Box Electrical Room Intrusion Diversion Box Knott Valve Trouble Alarm output to annunciator. | 10251 | 10EZSC686 | DIV ELEC RM | 02069 | 04126 | | 2 | 47259 | | | OLIOTOM | | | Note: All Alarms going to the annunciator are setup so that the Alarm contact is in series with the 1 second toggle coil causing the alarm to blink, then in parallel connect the acknowledge with no toggle so the output stays on until the acknowledge clears and in parallel with the | 40 | 405)/40745 | DIVIDATIVITY | | | | | | | 44 | CUSTOM | CUSTOM LOGIC - DIV KNOTT VLV AND KNOTT 1 FLO XMTR ANNUNCIATOR ALM | | alarm and acknoledge connect the lamp test contact. Diversion Box Knott 1 Flow XMTR Trouble Alarm output to | 49 | 10EYA671B | DIV KNOT VLV | | | | | | | 45 | CUSTOM | CUSTOM LOGIC - DIV KNOTT VLV AND KNOTT 1 FLO XMTR ANNUNCIATOR ALM | | annunciator. | 50 | 10EYA674B | DIV KNOT 1 FLO | | | | | | | | | | | Diversion Box Knott 2 Flow XMTR Trouble Alarm output to | | | | | | | | | | 46 | CUSTOM | CUSTOM LOGIC - DIV KNOTT 2 FLO XMTR AND PLC TRBL ANNUNCIATOR ALM | | annunciator. | 51 | 10EYA675B | DIV KNOT 2 FLO | | | | | | | | | | | Diversion Box PLC Trouble Alarm output to annunciator. Sum up, PLC Battery Fail, Memory Protect Off, PLC All Modules Not Healthy, PLC Drops Not Communicating, PLC Hot Standby Problem, PLC Controller B Primary, PLC Controller Logic Mis-match. Output is energized for normal condition, so series all contacts using normally closed contacts. | | | | | | | | | | 47 | CUSTOM | CUSTOM LOGIC - DIV KNOTT 2 FLO XMTR AND PLC TRBL ANNUNCIATOR ALM | | Lamp Test is in series instead of parallel. | 52 | 10EYA079 | PLC | | | | | | | 48 | CUSTOM | CUSTOM LOGIC - DIV BUSHARD VALVE AND FLOW XMTR ANNUNCIATOR ALARM | | Diversion Box Bushard Valve Trouble Alarm output to annunciator. | 53 | 10EYA676B | DIV BUSH VLV | | | | | | | 49 | CUSTOM | CUSTOM LOGIC - DIV BUSHARD VALVE AND FLOW XMTR ANNUNCIATOR ALARM | | Diversion Box Bushard Flow XMTR Trouble Alarm output to annunciator. | 54 | 10EYA673B | DIV BUSH FLO | | | | | | | 50 | OLIOTOM | CHOTOM LOGIC CONIC HEADD HILLE EVEL COMMON ALADM | | Diversion Box Sonic HI and HI HI Level Alarms are summed together | | 405117070 | DIV DOV CONIC | | | 07050 | | | | 50 | | CUSTOM LOGIC - SONIC HI AND HIHI LEVEL COMMON ALARM | | to produce a common alarm signal for the HI and HI HI. | | 10ELIT672 | DIV BOX SONIC | | | 07050 | | | | 51 | | CUSTOM LOGIC - DIV BOX SONIC HI LEVEL AND XMTR ANNUNCIATOR ALARM | | Diversion Box Sonic High Level Common Alarm output to annunciator. | 55 | 10ELAH672 | DIV BOX SONIC | | | | | | | 52 | | CUSTOM LOGIC - DIV BOX SONIC HI LEVEL AND XMTR ANNUNCIATOR ALARM | | Diversion Box Sonic XMTR Trouble Alarm output to annunciator. | 56 | 10EYA672B | DIV BOX SONIC | | | | | | | 53 | | CUSTOM LOGIC - DIV BOX GAS HIHI AND HI ANNUNCIATOR ALARM | | Diversion Box Gas Transmitter HI HI LEL Alarm output to annunciator. | 57 | 10EAAHH677 | DIV BOX GAS | | | | | | | 54 | | CUSTOM LOGIC - DIV BOX GAS HIHI AND HI ANNUNCIATOR ALARM | | Diversion Box Gas Transmitter HI LEL Alarm output to annunciator. | 58 | 10EAAH677 | DIV BOX GAS | | | | | | | 55 | | CUSTOM LOGIC - DIV BOX GAS XMTR TRBL AND HI SUMP ANNUNCIATOR ALM | | Diversion Box Gas XMTR Trouble Alarm output to annunciator. Diversion Box HI Sump Level Alarm output to annunciator. | 59
60 | 10EYA677B | DIV BOX GAS | | | | | | | 56
57 | | CUSTOM LOGIC - DIV BOX GAS XMTR TRBL AND HI SUMP ANNUNCIATOR ALM CUSTOM LOGIC - DIV BOX UPS BYPASS ON AND TROUBLE ANNUNCIATOR ALM | | Diversion Box HI Sump Level Alarm output to annunciator. Diversion Box UPS Bypass On Alarm output to annunciator. | 61 | 10ELAH684
10EYA678J | DIV SUMP
DIV UPS BYPASS | | | | | | | 58 | | CUSTOM LOGIC - DIV BOX UPS BYPASS ON AND TROUBLE ANNUNCIATOR ALM | | Diversion Box UPS Trouble Alarm output to annunciator. | 62 | 10EYA678B | DIV UPS BYPASS | | | | | | | 59 | | CUSTOM LOGIC - DIV BOX OPS BY PASS ON AND TROUBLE ANNUNCIATOR ALM CUSTOM LOGIC - DIV UPS BATT LO AND INST PWR FAIL ANNUNCIATOR ALM | | Diversion Box UPS Battery LO Alarm output to annunciator. | 63 | 10ETA076B | DIV UPS BATT | | | | | | | 60 | | CUSTOM LOGIC - DIV UPS BATT LO AND INST PWR FAIL ANNUNCIATOR ALM | | Diversion Box OF3 Battery LO Alarm output to annunciator. Diversion Box Instrumenation Power Fail Alarm output to annunciator. | 64 | 10EEAL676 | DIV OPS BATT | | | | - | | | - 00 | JUU I UIVI | GOOTOW LOOK - DIV OF G DATE LO AND INSTER WITH ANNIONOISTON ALM | | Strongion Box moramonation i ower i all Alaim output to annunctator. | UT | IOLUALUUI | DIV HAST FOWER | | | | | | | | | | | | | LOOP TAG | | R | EGISTE | R STARTING A | DDRES | S | |--------|----------|---|-----|--|----------|-------------|----------------|-------|--------|--------------|-------|-------| | | TEMPLATE | | | | REGISTER | | EQUIPMENT NAME | DO | DI | INT AO | Al | INT | | NUMBER | NAME | TEMPLATE PAGE TITLE DESCRIPTION | MOD | | NUMBER | (DESC1) | (DESC2) | 02xxx | 04xxx | 07xxx 42xxx | 44xxx | 47xxx | | | | | | Diversion Box Sonic Level display, move analog input signal to analog | | | | | | | | | | | | | | output register for display on panel front analog display. | | | | | | | | | | | | | | Note: For all found a small discolors are sometiment and a substitute of the substit | | | | | | | | | | | | | | Note: For all front panel displays move input to output until the Lamp | | | | | | | | | | | | | | Test button is pressed, when the Lamp Test is pressed
suspend | | | | | | | | | | | | | | moving the analog input to the analog output and instead alternate the display every 2 seconds, using the 2 second toggle contact, between 0 | | | | | | | | | | 61 | CUSTOM | CUSTOM LOGIC - DIV BOX SONIC LEVEL DISPLAY | | and 4095. | 40017 | 10ELI672 | DIV BOX SONIC | | | | | | | 01 | COSTON | COSTONI LOGIC - DIV BOX SOINIC LEVEL DISPLAT | | and 4093. | 40017 | IUELI072 | DIV BOX SOINIC | | | | | | | | | | | Diversion Box Gas Monitor LEL Level display, move analog input signal | | | | | | | | | | 62 | CUSTOM | CUSTOM LOGIC - DIV BOX GAS LEL DISPLAY | | to analog output register for display on panel front analog display. | 40018 | 10EAI677 | DIV BOX GAS | | | | | | | | 3331311 | OGG TO III EGGIO BIV BOX ONO ELLE BIGI ENTI | | Diversion Box Knott Valve Position display, move analog input signal to | | 102711077 | BIT BOX GITE | | | | | | | 63 | CUSTOM | CUSTOM LOGIC - DIV BOX KNOTT VALVE POSITION DISPLAY | | analog output register for display on panel front analog display. | 40020 | 10EZI671 | DIV KNOT VLV | | | | | | | | | | | Diversion Box Bushard Valve Position display, move analog input | | | | | | | | | | | | | | signal to analog output register for display on panel front analog | | | | | | | | | | 64 | CUSTOM | CUSTOM LOGIC - DIV BOX BUSHARD VALVE POSITION DISPLAY | | display. | 40022 | 10EZI676 | DIV BUSH VLV | | | | | | | | | | | Diversion Box Knott 1 Flow Meter Flow display, move analog input | | | | | | | | | | | | | | signal to analog output register for display on panel front analog display | | | | | | | | | | | | | | when flow meter Flow Total coil is enabled, when coil is off move a | | | | | | | | | | 65 | CUSTOM | CUSTOM LOGIC - DIV BOX KNOTT 1 FLOW DISPLAY | | value of 0 to the display. | 40023 | 10EFI674 | DIV KNOT 1 | | | | | | | | | | | Diversion Box Knott 1 Flow Meter Level display, move analog input | | | | | | | | | | | | | | signal to analog output register for display on panel front analog | | | | | | | | | | 66 | CUSTOM | CUSTOM LOGIC - DIV BOX KNOTT 1 LEVEL DISPLAY | | display. | 40024 | 10ELI674 | DIV KNOT 1 | | | | | | | | | | | Diversion Box Bushard Flow Meter Flow display, move analog input | | | | | | | | | | | | | | signal to analog output register for display on panel front analog display | | | | | | | | | | 0.7 | 0110-014 | OLIOTOMA O OLO DINADO VIDADO EL OM DIODIANA | | when flow meter Flow Total coil is enabled, when coil is off move a | 10005 | 40551030 | DW / DU 1011 | | | | | | | 67 | CUSTOM | CUSTOM LOGIC - DIV BOX BUSHARD FLOW DISPLAY | | value of 0 to the display. | 40025 | 10EFI673 | DIV BUSH | | | | | | | | | | | Diversion Box Bushard Flow Meter Level display, move analog input | | | | | | | | | | 68 | CUSTOM | CUSTOM LOGIC - DIV BOX BUSHARD LEVEL DISPLAY | | signal to analog output register for display on panel front analog display. | 40026 | 10ELI673 | DIV BUSH | | | | | | | 00 | CUSTOW | CUSTOW LOGIC - DIV BOX BUSHARD LEVEL DISPLAY | | Diversion Box Knott 2 Flow Meter Flow display, move analog input | 40020 | IUELIO/3 | חפטם עום | | | | | | | | | | | signal to analog output register for display on panel front analog display | | | | | | | | | | | | | | when flow meter Flow Total coil is enabled, when coil is off move a | | | | | | | | | | 69 | CUSTOM | CUSTOM LOGIC - DIV BOX KNOTT 2 FLOW DISPLAY | | value of 0 to the display. | 40027 | 10EFI675 | DIV KNOT 2 | | | | | | | - 00 | OCCION | OCCION ECCIO - BIV BOXINOTI 21 ECW BIOI EN | | Diversion Box Knott 2 Flow Meter Level display, move analog input | 10021 | 10211070 | DIVINIOT 2 | | | | | | | | | | | signal to analog output register for display on panel front analog | | | | | | | | | | 70 | CUSTOM | CUSTOM LOGIC - DIV BOX KNOTT 2 LEVEL DISPLAY | | display. | 40028 | 10ELI675 | DIV KNOT 2 | PUMP STATION PUMP CONTROLS | If the internal cleaning cycle disable is off and the operator pushes the | | | | | | | | | | | | | | Cleaning Panel Activate push button on the LCP panel, then seal-in the | | | | | | | | | | | | | | logic until the cleaning cycle is completed. The cleaning cycle is | | | | | | | | | | | | | | completed when the internal end cycle coil turns on. The cleaning | | | | | | | | | | | | | | cycle will abort and end prematurely if the internal cleaning cycle | | | | | | | | | | 71 | CUSTOM | CUSTOM LOGIC - LOCAL PANEL INPUTS CLEANING PANEL ACTIVATE | | disable coil subsequently turns on. | 10065 | 10EHS560J | CLEANING LCP | | | | | | | | | | | Combine each of the VFD mounted reset pushbuttons for pumps 1 and | | | | | | | | | | | | | | 2 with the individual CRISP A/M station resets using internal coils | | | | | | | | | | | | | | which will be fed into the three SWS-C02s to reset the logic for each | | | | | | | | | | 72 | CUSTOM | CUSTOM LOGIC - LOCAL PANEL INPUTS PUMPS RESET | | pump. | 10021 | 10EHS100H | PUMP 1 | | | | | | | | | | | Combine each of the VFD mounted reset pushbuttons for pumps 3 and | | | | | | | | | | 1 | | | | 4 with the individual CRISP A/M station resets using internal coils | | | | | | | | | | 70 | CHETOM | CHETOM LOCIC LOCAL DANIEL INDUTE DUMPS DESET | | which will be fed into the three SWS-C02s to reset the logic for each | 10440 | 40511000011 | DI IMP 0 | | | | | | | 73 | COSTOM | CUSTOM LOGIC - LOCAL PANEL INPUTS PUMPS RESET | | pump. | 10149 | 10EHS300H | PUMP 3 | | | | | | | | | | | | | LOOP TAG | | R | EGISTE | R STAR | TING AD | DRESS | |--------|----------|---|-----|--|----------|-------------|----------------|-------|--------|--------|---------|-------------| | | TEMPLATE | | | | REGISTER | NUMBER | EQUIPMENT NAME | DO | DI | INT | AO | AI INT | | NUMBER | NAME | TEMPLATE PAGE TITLE DESCRIPTION | MOD | | NUMBER | (DESC1) | (DESC2) | 02xxx | 04xxx | 07xxx | 42xxx 4 | 44xxx 47xxx | | | | | | The Pumps Speed Up and Down push buttons and logic are only | | | | | | | | | | | | | | enabled once the Operator presses the Start Cleaning Cycle Push | | | | | | | | | | | | | | button. Once enabled combine the Pump 1 Speed Up and Down push | | | | | | | | | | | | | | buttons from LCP-A with timer circuits so that one press of the button | | | | | | | | | | | | | | results in a single pulse of the internal speed up or down coil, while | | | | | | | | | | | | | | holding the button causes the coil to pulse repeatedly after a short time | | | | | | | | | | 74 | CUSTOM | CUSTOM LOGIC - PANEL LCP-A PUMPS SPEED UP/DOWN PUSHBUTTON | | delay. | 10132 | 10EHS560N | PUMPS LCPA | | | | | | | | | | | If the Operator has enabled the cleaning cycle at the LCP panel and | | | | | | | | | | | | | | then presses the Prepare to Clean push button on the LCP-A panel, | | | | | | | | | | | | | | then seal-in the logic until the cleaning cycle ends. The Prepare to | | | | | | | | | | | | | | Clean logic causes control to transfer from the normal wetwell level | | | | | | | | | | 7.5 | OLIOTOM | OUOTOM LOGIC DANIEL LOD A PREPARE OF FAMILIO OVOLE RUGURUTTON | | control PID to manual pump speed control. It also results in any | 40400 | 40511050016 | OLEANUNO LODA | | | | | | | 75 | CUSTOM | CUSTOM LOGIC - PANEL LCP-A PREPARE CLEANING CYCLE PUSHBUTTON | | wetwell level alarms being disabled. | 10129 | 10EHS560K | CLEANING LCPA | | | | | | | 70 | OLIOTOM | OUOTOMA OOLO DANELA OD A OTADT OLEANINO OVOLE DUOLIDUTTOM | | When the Operator presses the LCP-A Start Clean Cycle push button the logic is sealed-in only if the Prepare to Clean is already active. | 40420 | 4051105001 | OLEANUNO LODA | | | | | | | 76 | CUSTOM | CUSTOM LOGIC - PANEL LCP-A START CLEANING CYCLE PUSHBUTTON | | | 10130 | 10EHS560L | CLEANING LCPA | | | | | | | | | | | If the Operator presses the End Cycle push button on the LCP-A panel | | | | | | | | | | | | | | then seal-in the logic to end the cleaning cycle. The seal-in is released | | | | | | | | | | | | | | once the internal end cycle coil activates. The cleaning cycle also ends | | | | | | | | | | | | | | automatically if the operator fails to push the Start Cleaning Cycle push | | | | | | | | | | 77 | OLIOTOM | OUOTOM LOGIO DANEL LODA END OLEANINO OVOLE DUOLIDUTTONI | | button within a hard coded time delay after the Cleaning Panel Activate | 40404 | 40511050014 | OLEANUNO LODA | | | | | | | 77 | CUSTOM | CUSTOM LOGIC - PANEL LCP-A END CLEANING CYCLE PUSHBUTTON | | is sealed-in. | 10131 | 10EHS560M | CLEANING LCPA | | | | | | | | | | | If both the End Cycle logic from the previous network is sealed-in and | | | | | | | | | | | | | | the Wetwell Low Level Alarms inhibit logic turns off then the coil is | | | | | | | | | | 70 | OLIOTOM | OUOTOMA OOLO INTERNAL END OLEANINO OVOLE | | activated, which then ends the cleaning cycle and causes all panel | 40404 | 40511050014 | OLEANUNO LODA | | | | | | | 78 | CUSTOM | CUSTOM LOGIC - INTERNAL END CLEANING CYCLE | | related lights to turn off and the system returns to normal operation. Generate a status word for CRISP to indicate which step of the | 10131 | 10EHS560M | CLEANING LCPA | | | | | | | | | | | cleaning cycle is active. CRISP will display: STANDBY, DISABLE, | | | | | | | | | | 70 | CUCTOM | CHETOM LOCIC OF FAMILIE CYCLE ACTIVE STATUS WORD | | ACTIVATE, PREPARE, START and END. Tag Ext: STA | | 10EPL100 | PUMPS | | | | | | | 79 | CUSTOM | CUSTOM LOGIC - CLEANING CYCLE ACTIVE STATUS WORD | | A mode coil is generated and sent to CRISP for display on the pumps' | | IUEPLIUU | FUIVIFS | | | | | | | | | | | A/M stations to indicate a cleaning cycle is in progress. Tag Ext: _CAM | | | | | | | | | | 80 | CUSTOM | CUSTOM LOGIC - CLEANING CYCLE ACTIVE MODE | | Use CRISP A/M ON and OFF symbols. | | 10EPK100 | PUMPS | | | | | | | - 60 | COSTON | COSTONI EOGIC - CLEANING CTOLE ACTIVE MODE | | OSC ONTO PANTON AND OTT
SYMBOLS. | | TOLFICTOO | r Olvir S | | | | | | | | | WETWELL LEVEL SCALING AND DEVIATION LOGIC | | | | | | | | | | | | | | WEITHER ELVEL GOALING AND DEVIATION EGGIO | | | | | | | | | | | | 81 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Wetwell High Level Float | 10001 | 10ELSH040 | WW FLOAT | 02070 | 04128 | | | 47260 | | | | | | Bubbler purge. Purge Bubbler after the completion of a cleaning cycle | | | | | | | | | | 82 | CUSTOM | CUSTOM LOGIC - BUBBLER PURGE LOGIC | \ | or if Operator Initiated from HMI. | 3 | 10EFCP030 | WW BUBBLER | | | | | | | 83 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Bubbler Low Air Pressure Alarm | 10008 | 10EPSL030 | WW BUBBLER | 02071 | 04130 | | | 47261 | | 84 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Bubbler | 30002 | 10ELIT030 | WW BUBBLER | | | | | 44144 47262 | | 85 | SWS-C12C | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Ultrasonic | 30011 | 10ELIT035 | WW SONIC | | | | | | | | | | | Ultrasonic Level Switch Low (LSL), inhibit when Ultrasonic is not In- | | | | | | | | | | 86 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(MOD SWS-C12F V1.10) | Y | Service and during cleaning cycle. | 10002 | 10ELSL035 | WW SONIC | 02072 | 04132 | | | 47269 | | | | | | Ultrasonic Level Switch Low Low (LSLL), inhibit when Ultrasonic is not | | | | | | | | | | 87 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(MOD SWS-C12F V1.10) | Υ | In-Service and during cleaning cycle. | 10003 | 10ELSLL035 | WW SONIC | 02073 | 04134 | | | 47270 | | | | | | Ultrasonic Fail (Displayed on configuration screen). Inhibit when XMTR | | | | | | | | | | 88 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | is Out of Service. | 10004 | 10EYS035B | WW SONIC | | | | | | | | | | | Allow the operator to place the bubbler or ultrasonic Out Of Service via | | | | | | | | | | | | | | CRISP only if the transmitter is not selected as the active level | | | | | | | | | | 89 | CUSTOM | CUSTOM LOGIC - LEVEL TRANSMITTERS OOS AND INS SELECTION | | transmitter. Tag Ext: _ISM _OSM | | 10ELF030 | WW ACT | | | | | | | | | | | Select either ultrasonic or bubbler as active level transmitter provided | | | | | | | | | | 90 | CUSTOM | CUSTOM LOGIC - ACTIVE LEVEL TRANSMITTER SELECT | | the transmitter is not out of service. | | 10ELE030 | WW ACT | | | | | | | | | | | Block move the raw input value for the selected level transmitter into a | | | | | | | | | | 91 | CUSTOM | CUSTOM LOGIC - MOVE RAW VALUE FOR SELECTED TRANSMITTER | | common register for SWS-C12A's use. | | 10ELD030 | WW ACT | | | | | | | | | | | Measure the deviation between the two level transmitters to see if the | | | | | | | | | | _ | | | | reading exceeds the hard coded setpoint only if both transmitters are in | | | | | | | | | | 92 | | CUSTOM LOGIC - ACTIVE LEVEL DEVIATION ALARM | | service. | | 10ELC030 | WW ACT | 0000 | 0.4 | | | | | 93 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Alarm when a deviation occurs. | | 10ELDSH030 | WW ACT | 02074 | 04136 | | | 47271 | | | | | | | | LOOP TAG | | R | REGISTE | R STARTING A | ADDRES | S | |------------|----------|--|-----|--|----------------|-------------------------|--------------------------|-------|----------------|--------------|--------|----------------| | BLOCK | TEMPLATE | | | | REGISTER | NUMBER | EQUIPMENT NAME | DO | DI | INT AO | Al | INT | | NUMBER | NAME | TEMPLATE PAGE TITLE DESCRIPTION | MOD | COMMENT | NUMBER | (DESC1) | (DESC2) | 02xxx | 04xxx | 07xxx 42xxx | 44xxx | 47xxx | | | | | | If the prepare to clean logic is active and the End Cycle logic is off and | | | | | | | | | | | | | | the Ultrasonic's wetwell level reading is below the Active Level | | | | | | | | | | | | | | transmitter's Low Wetwell Level setpoint then keep alarm inhibit coil | | | | | | | | | | | | | | on. Once the alarm inhibit coil turns off a delay timer keeps the alarm | | | | | | | | | | | | | | inhibit on for an additional time delay. This logic is used to both inhibit | | | | | | | | | | | | | | all wetwell low level alarms and is used by the internal end cycle logic | | | | | | | | | | 94 | CUSTOM | CUSTOM LOGIC - CLEANING CYCLE LOW WETWELL LEVEL ALARMS INHIBIT | | to complete the cleaning cycle. | | 10ELB030 | WW ACT | | | | | | | | | | | Combine the Deviation Alarm and when the Ultrasonic is selected the | | | | | | | | | | | | | | Ultrasonic Fail Alarm and when the Bubbler is selected the Bubbler | | | | | | | | | | | | | | Low Pressure Alarm to generate the External Common Alarm signals | | | | | | | | | | 95 | CUSTOM | CUSTOM LOGIC - ACTIVE LEVEL EXTERNAL ALARM SIGNALS | | for the Active Level Transmitter SWS-C12A. | | 10ELA030 | WW ACT | | | | | | | | | | | Inhibit Low and Low Low Alarms during the cleaning cycle. Use | | | | | | | | | | 96 | SWS-C12A | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12A V1.30) | | external alarm from previous network. Tag Ext: either _ACT _LVL | | 10ELT030 | WW ACT | | | | | | | | | | | After a power fail the pumps are placed into Wait Mode until an | | | | | | | | | | | | | | Operator initiated Restart is issued from the Configuration Graphic. | | | | | | | | | | 0.7 | OLIOTOM | OUGTON LOOKS BUMBS BOWED FAIL DESTART LOOKS | | Once the Restart is issued individual timers will relase the pumps to | | 1055 1100 | DI IMPO | | | | | | | 97 | CUSTOM | CUSTOM LOGIC - PUMPS POWER FAIL RESTART LOGIC | | run. Tag Ext: _RST | | 10EPJ100 | PUMPS | | | | | | | | | PUMP STATION PUMP 1 ALARMS | | | | | | | | | | | | | | FOWE STATION FOWE TALARMS | | | | | | | | | | | | 98 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 1 Winding High Temperature, inhibit if pump 1 is out of service. | | | | 02075 | 04138 | | + | 47272 | | 99 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 1 RTD High Temperature, inhibit if pump 1 is out of service. | 10023 | 10ETSH110 | PUMP 1 MTR | 02076 | 04140 | | | 47273 | | 100 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 1 Bearing Over Temp, inhibit if pump 1 is out of service. | 10024 | 10ETSH102 | PUMP 1 MTR | | 04142 | | | 47274 | | 101 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 1 Stator High Moisture, inhibit if pump 1 is out of service. | 10025 | 10EMSH104 | PUMP 1 MTR STR | | 04144 | | | 47275 | | 102 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 1 Oil Chamber High Moisture, inhibit if pump 1 is out of service. | 10026 | 10EMSH104A | | | 04146 | | | 47276 | | 103 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 1 High Vibration, inhibit if pump 1 is out of service. | 10027 | 10EVSH108 | PUMP 1 | | 04148 | | | 47277 | | 104 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 1 Multilin Trouble, inhibit if pump 1 is out of service. | 10028 | 10EYS100D | PUMP 1 MULTLIN | | 04150 | | | 47278 | | 105 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 1 Multilin Tripped, inhibit if pump 1 is out of service. | 10029 | 10EYS100E | PUMP 1 MULTLIN | | 04152 | | | 47279 | | | | | | Place pump 1 into the Wait Mode if the High Winding Temp or High | | | | | | | | | | | | | | RTD Temp or High Bearing Temp or High Stator Moisture or High | | | | | | | | | | | | | | Vibration or Multilin Trouble or Check Valve Fail to Open or Close | | | | | | | | | | 106 | CUSTOM | CUSTOM LOGIC - EXTERNAL WAIT MODE FOR PUMP 1 | | Alarm are active. | | 10EPH100 | PUMP 1 | | | | | | | | | | | Combine High Winding Temp, High RTD Temp, High Bearing Temp, | | | | | | | | | | | | | | High Stator Moisture, High Oil Chamber Moisture, High Vibration, | | | | | | | | | | | | | | Multilin Trouble, Multilin Tripped and Check Valve Fail to Open or | | | | | | | | | | 107 | CUSTOM | CUSTOM LOGIC - EXTERNAL COMMON ALARM FOR PUMP 1 | | Close Alarms into a common alarm for pump 1 SWS-C02. | | 10EPG100 | PUMP 1 | PUMP STATION PUMP 2 ALARMS | | | | | | | | | | | | 400 | CWC C42E | DISCRETE CICNIAL TEMPLATE LOCIO/ON/C CASE VA 40\ | | Duman 2 Winding High Tomporature, inhibit if numan 2 is out of convice | 10020 | 400000 | DUMD A MTD | 00000 | 04454 | | | 47000 | | 108
109 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 2 Winding High Temperature, inhibit if pump 2 is out of service. Pump 2 RTD High Temperature, inhibit if pump 2 is out of service. | 10038
10039 | 10ETSH203
10ETSH210 | PUMP 2 MTR
PUMP 2 MTR | | 04154
04156 | | | 47280
47281 | | 110 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 2 Bearing Over Temp, inhibit if pump 2 is out of service. | 10039 | 10ETSH210 | PUMP 2 MTR | | 04158 | | | 47282 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 2 Stator High Moisture, inhibit if pump 2 is out of service. | 10040 | 10E1SH202 | PUMP 2 MTR STR | | | | | 47283 | | 111 | | , | | Pump 2 Oil Chamber High Moisture, inhibit if pump 2 is out of service. | | | | | 04160 | | | 47284 | | 112
113 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 2 High Vibration, inhibit if pump 2 is out of service. | 10042
10043 | 10EMSH204A
10EVSH208 | PUMP 2 OIL CHM
PUMP 2 | | 04162
04164 | | | 47285 | | 114 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 2 Multilin Trouble, inhibit if pump 2 is out of service. | 10043 | 10EVS11200
10EYS200D | PUMP 2 MULTLIN | | 04166 | | | 47286 | | 115 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 2 Multilin Tripped, inhibit if pump 2 is out of service. | 10044 | 10EYS200E | PUMP 2 MULTLIN | | 04168 | | | 47287 | | 110 | 000-0126 | DISSILIE GIGINAL ILIVII LATE
EGGIO(GVVO-GIZI VI.IU) | | Place pump 2 into the Wait Mode if the High Winding Temp or High | 10070 | 101 1 02001 | I OWII Z WIOLILIN | 02080 | 0-1100 | | + | 71201 | | 1 | | | | RTD Temp or High Bearing Temp or High Stator Moisture or High | | | | | | | | | | 1 | | | | Vibration or Multilin Trouble or Check Valve Fail to Open or Close | | | | | | | | | | 116 | CUSTOM | CUSTOM LOGIC - EXTERNAL WAIT MODE FOR PUMP 2 | | Alarm are active. | | 10EPD200 | PUMP 2 | | | | | | | | 7 | · · · · · · · · · · · · · · · · · · · | | Combine High Winding Temp, High RTD Temp, High Bearing Temp, | | | | | | | | | | | | | | High Stator Moisture, High Oil Chamber Moisture, High Vibration, | | | | | | | | | | | | | | Multilin Trouble, Multilin Tripped and Check Valve Fail to Open or | | | | | | | | | | 117 | CUSTOM | CUSTOM LOGIC - EXTERNAL COMMON ALARM FOR PUMP 2 | | Close Alarms into a common alarm for pump 2 SWS-C02. | | 10EPC200 | PUMP 2 | | | | | | | | | | | 1 1 | | | | | | | | | | _ | | | | | | LOOP TAG | | - | | R STAI | RTING A | DDRESS | | |-----------------|------------------|--|-----|---|-----------------|-------------------|---------------------------|-------|-------|--------|-------------|--------|--------| | BLOCK
NUMBER | TEMPLATE
NAME | | MOD | COMMENT | REGISTER NUMBER | NUMBER
(DESC1) | EQUIPMENT NAME
(DESC2) | DO | DI | INT | AO
42xxx | Al | INT | | NUMBER | NAME | TEMPLATE PAGE TITLE DESCRIPTION PUMP STATION PUMP 3 ALARMS | MOD | COMMENT | NUMBER | (DESC1) | (DESC2) | UZXXX | 04888 | U/XXX | 42333 | 44XXX | 4/ XX) | | | | PUNIF STATION PUNIF S ALARMIS | | | | | | | | | | | | | 118 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | Pı | imp 3 Winding High Temperature, inhibit if pump 3 is out of service. | 10150 | 10ETSH303 | PUMP 3 MTR | 02091 | 04170 | | | | 47288 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Imp 3 RTD High Temperature, inhibit if pump 3 is out of service. | 10151 | 10ETSH310 | PUMP 3 MTR | | 04172 | | | | 47289 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Imp 3 Bearing Over Temp, inhibit if pump 3 is out of service. | 10152 | 10ETSH302 | PUMP 3 MTR | | 04174 | | | | 47290 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Imp 3 Stator High Moisture, inhibit if pump 3 is out of service. | 10153 | 10EMSH304 | PUMP 3 MTR STR | | 04176 | | | | 47291 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | imp 3 Oil Chamber High Moisture, inhibit if pump 3 is out of service. | 10154 | 10EMSH304A | | 02095 | | | | | 47292 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | mp 3 High Vibration, inhibit if pump 3 is out of service. | 10155 | 10EVSH308 | PUMP 3 | | 04180 | | | | 47293 | | 124 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | Pu | mp 3 Multilin Trouble, inhibit if pump 3 is out of service. | 10156 | 10EYS300D | PUMP 3 MULTLIN | 02097 | 04182 | | | | 47294 | | 125 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | Pu | mp 3 Multilin Tripped, inhibit if pump 3 is out of service. | 10157 | 10EYS300E | PUMP 3 MULTLIN | 02098 | 04184 | | | | 47295 | | | | | | ace pump 3 into the Wait Mode if the High Winding Temp or High | | | | | | | | | | | | | | | TD Temp or High Bearing Temp or High Stator Moisture or High | | | | | | | | | | | | | | Vi | pration or Multilin Trouble or Check Valve Fail to Open or Close | | | | | | | | | | | 126 | CUSTOM | CUSTOM LOGIC - EXTERNAL WAIT MODE FOR PUMP 3 | | arm are active. | | 10EPD300 | PUMP 3 | | | | | | | | | | | | ombine High Winding Temp, High RTD Temp, High Bearing Temp, | | | | | | | | | | | | | | | gh Stator Moisture, High Oil Chamber Moisture, High Vibration, | | | | | | | | | | | | | | | ultilin Trouble, Multilin Tripped and Check Valve Fail to Open or | | _ | | | | | | | | | 127 | CUSTOM | CUSTOM LOGIC - EXTERNAL COMMON ALARM FOR PUMP 3 | CI | ose Alarms into a common alarm for pump 3 SWS-C02. | | 10EPC300 | PUMP 3 | | | | | | | | | | PUMP STATION PUMP 4 ALARMS | | | | | | | | | | | | | 100 | CMC C12E | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | D | Imp 4 Winding High Temperature, inhibit if pump 4 is out of service. | 10166 | 10ETSH403 | PUMP 4 MTR | 02000 | 04186 | | | | 47296 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Imp 4 RTD High Temperature, inhibit if pump 4 is out of service. | 10167 | 10ETSH410 | PUMP 4 MTR | | 04188 | | | | 47297 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Imp 4 Bearing Over Temp, inhibit if pump 4 is out of service. | 10167 | 10ETSH402 | PUMP 4 MTR | | 04190 | | | | 47298 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Imp 4 Stator High Moisture, inhibit if pump 4 is out of service. | 10169 | 10ENSH404 | PUMP 4 MTR STR | | 04190 | | | | 47299 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Imp 4 Oil Chamber High Moisture, inhibit if pump 4 is out of service. | 10170 | 10EMSH404A | | | 04194 | | | | 47300 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Imp 4 High Vibration, inhibit if pump 4 is out of service. | 10171 | 10EVSH408 | PUMP 4 | | 04196 | | | | 47301 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | mp 4 Multilin Trouble, inhibit if pump 4 is out of service. | 10172 | 10EYS400D | | 02105 | | | | | 47302 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Imp 4 Multilin Tripped, inhibit if pump 4 is out of service. | 10173 | 10EYS400E | | 02106 | | | | | 47303 | | | 0.1.0 0.1. | | | ace pump 4 into the Wait Mode if the High Winding Temp or High | 10111 | .02.0.002 | | 02.00 | 0.200 | | | | | | | | | | D Temp or High Bearing Temp or High Stator Moisture or High | | | | | | | | | | | | | | | pration or Multilin Trouble or Check Valve Fail to Open or Close | | | | | | | | | | | 136 | CUSTOM | CUSTOM LOGIC - EXTERNAL WAIT MODE FOR PUMP 4 | Al | arm are active. | | 10EPD400 | PUMP 4 | | | | | | | | | | | | ombine High Winding Temp, High RTD Temp, High Bearing Temp, | | | | | | | | | | | | | | | gh Stator Moisture, High Oil Chamber Moisture, High Vibration, | | | | | | | | | | | | | | | ultilin Trouble, Multilin Tripped and Check Valve Fail to Open or | | | | | | | | | | | 137 | CUSTOM | CUSTOM LOGIC - EXTERNAL COMMON ALARM FOR PUMP 4 | CI | ose Alarms into a common alarm for pump 4 SWS-C02. | | 10EPC400 | PUMP 4 | | | | | | | | | | PUMP STATION PUMPS 1 THRU 4 CLEANING CYCLE LOGIC | | | | | | | | | | | | | | | | | | | LOOP TAG | | R | EGISTE | R STARTING | ADDRESS | |--------|----------|--|----------|--|----------|-----------------------|------------------|-------|--------|--------------|--| | BLOCK | TEMPLATE | | | | REGISTER | NUMBER | EQUIPMENT NAME | DO | DI | INT AO | Al INT | | NUMBER | NAME | TEMPLATE PAGE TITLE DESCRIPTION | MOD | COMMENT | NUMBER | (DESC1) | (DESC2) | 02xxx | 04xxx | 07xxx 42xx | x 44xxx 47xxx | | | | | | | | | | | | | | | | | | | During a decreio a contra accorda discontra discontra de Contra | | | | | | | | | | | | | During cleaning cycles pump 1 is directly controlled from the field, the | | | | | | | | | | | | | A/M station is not in control during cleaning cycles. | | | | | | | | | | | | | 0 | | | | | | | | | | | | | Once the Cleaning Cycle begins the SWS-C15A and SWS-C02 | | | | | | | | | | | | | templates will display Auto/Auto mode on the CRISP HMI display but | | | | | | | | | | | | | the templates will internally be controlled by the LCP-A pushbuttons. | The CRISP Pump 1 Auto/Manual buttons and the On/Off/Auto button | | | | | | | | | | | | | are transferred through this block
of logic to the pump 1 SWS-C15A | | | | | | | | | | | | | and SWS-C02 templates. | During cleaning cycles pump 1 is internally locked into Manual Mode | | | | | | | | | | | | | (for On/Off/Auto). At the start of the cleaning cycle when the Operator | | | | | | | | | | | | | presses the Prepare to Clean Pushbutton on LCP-A, Pump 1 is initially | | | | | | | | | | | | | locked into the On mode. Once the Operator presses the Start | | | | | | | | | | | | | Cleaning cycle Pushbutton the Pump 1 Start/Stop pushbuttons on LCP- | | | | | | | | | | | | | A can manually control the operation of Pump 1. | When the cleaning cycle is not active the HMI speed setpoint is passed | | | | | | | | | | | | | to the Pump 1 A/M Station, when the cleaning cycle is in Prepare To | | | | | | | | | | | | | Clean mode lock Pump 1 to 60% speed. When the cleaning cycle | | | | | | | | | | | | | switches to the Start Cleaning Cycle mode, the 60% speed setpoint | | | | | | | | | | | | | stops transferring to the A/M station so that the LCP-A push buttons | | | | | | | | | | | | | can manipulate the speed of the pump. If at anytime the pump is | | | | | | | | | 138 | CUSTOM | CUSTOM LOGIC - PUMP 1 MANUAL MODE LOGIC DURING CLEANING CYCLE | | turned off the a 0 value is loaded into the speed setpoint. | | 10EPF100 | PUMP 1 | | | | | | | | | | Cleaning cycle manual control for Pump 2, see Pump 1 above for | | | | | | | | | | | | | detailed description with the exception that Pump 2 is initially off when | | | | | | | | | | | | | the cleaning cycle begins, it can be manually started once the Operator | | | | | | | | | 139 | CUSTOM | CUSTOM LOGIC - PUMP 2 MANUAL MODE LOGIC DURING CLEANING CYCLE | | initiates the Start Cleaning Cycle operation. | | 10EPB200 | PUMP 2 | | | | | | | | | | Cleaning cycle manual control for Pump 3, see Pump 1 above for | | | | | | | | | | | | | detailed description with the exception that Pump 3 is initially off when | | | | | | | | | | | | | the cleaning cycle begins, it can be manually started once the Operator | | | | | | | | | 140 | CUSTOM | CUSTOM LOGIC - PUMP 3 MANUAL MODE LOGIC DURING CLEANING CYCLE | | initiates the Start Cleaning Cycle operation. | | 10EPB300 | PUMP 3 | | | | | | | | | | Cleaning cycle manual control for Pump 4, see Pump 1 above for | | | | | | | | | | | | | detailed description with the exception that Pump 4 is initially off when | | | | | | | | | | | | | the cleaning cycle begins, it can be manually started once the Operator | | | | | | | | | 141 | CUSTOM | CUSTOM LOGIC - PUMP 4 MANUAL MODE LOGIC DURING CLEANING CYCLE | | initiates the Start Cleaning Cycle operation. | | 10EPB400 | PUMP 4 | PUMP STATION LEVEL CONTROL LOGIC | | | | | | | | | | | 140 | CMC C450 | MANULAL LOADING STATION TEMPLATE LOCICIONAS CAFO VA 40) | | | | 10555100 | DUMPO | | | 07052 4000 | 1 1111 1700 | | | | MANUAL LOADING STATION TEMPLATE LOGIC(SWS-C15C V1.10) | | | | 10EPE100 | PUMPS | | | | 1 44145 47304 | | | | PID CONTROL, CLOSED LOOP TEMPLATE LOGIC(SWS-C09 V2.00) | | | | 10EPD100 | PUMPS | 02407 | 04000 | | 2 44147 47305 | | | | AUTO/MANUAL STATION TEMPLATE LOGIC(SWS-C15A V1.01) | | Allow numn anguange to start only if the Month Valve is not also a | | 10EPC100 | PUMPS | | | | 6 44152 47348 | | | | LEAD/LAG1/LAG2/LAG3/LAG4, VAR SPD TEMPLATE LOGIC(SWS-C11 V1.12) AUTO/MANUAL STATION TEMPLATE LOGIC(MOD SWS-C15A V1.01) | V | Allow pump sequence to start only if the Knott Valve is not closed. | | 10EPB100 | PUMPS | | | | 7 44154 47349 | | | | <u> </u> | Y | Pump 1 Pump 1 | 1 | 10EPA100
10EPMP100 | PUMP 1 | | | | 7 44169 47410 | | | | PUMP CONTROL, VARIABLE SPEED TEMPLATE LOGIC (SWS-C02 V1.20) MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Pump 1 | 10018 | 10EPMP100
10EYS100 | PUMP 1
PUMP 1 | 02116 | | 07136 4210 | 44171 4741 ²
44175 4743 ² | | | | AUTO/MANUAL STATION TEMPLATE LOGIC(SWS-C13 V1.02) | V | Pump 2 | 10016 | 10EYS100
10EPA200 | PUMP 1
PUMP 2 | _ | | | 9 44179 47433 | | | | PUMP CONTROL, VARIABLE SPEED TEMPLATE LOGIC (SWS-C13A V1.01) | T | Pump 2 | 9 | 10EPA200
10EPMP200 | PUMP 2 | | | | 0 44181 4743 | | | | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Pump 2 | 10034 | 10EPMP200
10EYS200 | PUMP 2 | 02127 | | 07146 421 | 44181 47432 | | | | AUTO/MANUAL STATION TEMPLATE LOGIC(SWS-C13 V1.02) | V | Pump 3 | 10034 | 10EYS200
10EPA300 | PUMP 3 | | | | 1 44189 47456 | | | | PUMP CONTROL, VARIABLE SPEED TEMPLATE LOGIC (SWS-C02 V1.20) | T | Pump 3 | 33 | 10EPA300
10EPMP300 | PUMP 3 | | | | 2 44191 47457 | | | | · · · · · · · · · · · · · · · · · · · | | Pump 3 | 10146 | | | 02130 | 04243 | 07 100 421 | 44191 4/40 | | | | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | V | · | 10140 | 10EYS300 | PUMP 3 | 02446 | 04257 | 07162 4044 | 2 44105 47470 | | | | AUTO/MANUAL STATION TEMPLATE LOGIC(SWS-C15A V1.01) | Y | Pump 4 | 11 | 10EPA400 | PUMP 4 | | | | 3 44195 47478 | | 156 | 3VV3-UU2 | PUMP CONTROL, VARIABLE SPEED TEMPLATE LOGIC (SWS-C02 V1.20) | | Pump 4 | 41 | 10EPMP400 | PUMP 4 | UZ148 | ∪4∠59 | U/ 100 4211 | 4 44197 47479 | | | | | | | | LOOP TAG | | REGISTI | ER START | TING A | DDRESS | |--------|-----------|--|-----|---|----------|------------|--------------------|--------------------------|----------|--------|-------------| | BLOCK | TEMPLATE | | | | REGISTER | NUMBER | EQUIPMENT NAME | DO DI | | AO | AI INT | | NUMBER | NAME | TEMPLATE PAGE TITLE DESCRIPTION M | 1OD | COMMENT | NUMBER | (DESC1) | (DESC2) | 02xxx 04xxx | 07xxx 4 | 42xxx | 44xxx 47xxx | | 157 | SWS-C13 | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Pump 4 | 10162 | 10EYS400 | PUMP 4 | | | | | | | | | | Convert the pump 1 speed signal to RPMs for display on the detail | | | | | | | | | 158 | SWS-C12C | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | graphic. Tag Ext: _RPM | 30001 | 10EST100 | PUMP 1 | | | | 44201 47500 | | | | | | Convert the pump 2 speed signal to RPMs for display on the detail | 00040 | | | | | | | | 159 | SWS-C12C | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | graphic. Tag Ext: _RPM | 30010 | 10EST200 | PUMP 2 | | | | 44202 47507 | | 400 | 0000 | TRANSMITTER GIONALO TEMPLATE LOCIO/OM/O 0400 V/4 00V | | Convert the pump 3 speed signal to RPMs for display on the detail | 20040 | 40505000 | DUMD 0 | | | | 44000 47544 | | 160 | SWS-C12C | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | graphic. Tag Ext: _RPM Convert the pump 4 speed signal to RPMs for display on the detail | 30019 | 10EST300 | PUMP 3 | | | | 44203 47514 | | 161 | SWS C13C | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | graphic. Tag Ext: RPM | 30028 | 10EST400 | PUMP 4 | | | | 44204 47521 | | 101 | 3003-0120 | TRANSIVITTER SIGNALS TEIVIPLATE LOGIC(SWS-C12C V1.02) | | угарпіс. Таў ЕхіКРМ | 30028 | 10E31400 | FUIVIF 4 | | | | 44204 47321 | | | | PUMP CHECK VALVE STATUS INDICATION LOGIC | | | | | | | | | | | | | 1 OIII OILON VALVE OTATOO INDIGATION EGGIO | 162 | CUSTOM | CUSTOM LOGIC - PUMP 1 CHECK VALVE STATUS DISPLAY | | Converts the pump 1 check valve closed limit switch to a display word. | 10030 | 10EZSC105 | PUMP 1 CHK VLV | | | | | | | | | | Pump 1 check valve fail to open or close alarm. Inhibited when pump is | | | | | | | | | 163 | SWS-C12G | DISCRETE ALARM W/RESET TEMPLATE LOGIC(MOD SWS-C12G V1.00) | Υ | Out of Service. | 10030 | 10EZSC105 | PUMP 1 CHK VLV | 02156 04273 | | | 47528 | | | | | | | | | | | | | | | 164 | CUSTOM | CUSTOM LOGIC - PUMP 2 CHECK VALVE STATUS DISPLAY | | Converts the pump 2 check valve closed limit switch to a display word. | 10046 | 10EZSC205 | PUMP 2 CHK VLV | | | | | | | | | | Pump 2 check valve fail to open or close alarm. Inhibited
when pump is | | | | | | | | | 165 | SWS-C12G | DISCRETE ALARM W/RESET TEMPLATE LOGIC(MOD SWS-C12G V1.00) | Υ | Out of Service. | 10046 | 10EZSC205 | PUMP 2 CHK VLV | 02158 04275 | | | 47529 | | 100 | CHCTOM | CHOTOM LOCIC DUMP 2 CHECK VALVE STATUS DISPLAY | | Converts the numb 2 sheek valve aloged limit quitable and index word | 10158 | 405700005 | PUMP 3 CHK VLV | | | | | | 166 | CUSTOM | CUSTOM LOGIC - PUMP 3 CHECK VALVE STATUS DISPLAY | | Converts the pump 3 check valve closed limit switch to a display word. Pump 3 check valve fail to open or close alarm, enabled when pump | 10158 | 10EZSC305 | PUMP 3 CHK VLV | | | | | | 167 | SWS C12G | DISCRETE ALARM W/RESET TEMPLATE LOGIC(MOD SWS-C12G V1.00) | | starts. Inhibited when pump is Out of Service. | 10158 | 10EZSC305 | PUMP 3 CHK VLV | 02160 04277 | | | 47530 | | 107 | 3773-0120 | DISCRETE ALARIW WINESET TEINI LATE LOGIC(MOD SWO-C126 V 1:00) | | starts. Initibilited which pump is out of oct vice. | 10130 | 10L23C303 | FOIVIF 3 OF IK VLV | 02100 04211 | | | 47330 | | 168 | CUSTOM | CUSTOM LOGIC - PUMP 4 CHECK VALVE STATUS DISPLAY | | Converts the pump 4 check valve closed limit switch to a display word. | 10174 | 10EZSC405 | PUMP 4 CHK VLV | | | | | | | CCCTCIII | COCTOM ECONO TOMA TONESCO VIEWE CIVILOS DICI EN | | Pump 4 check valve fail to open or close alarm, enabled when pump | | 102200 100 | T OIM T OF III VEV | | | | | | 169 | SWS-C12G | DISCRETE ALARM W/RESET TEMPLATE LOGIC(MOD SWS-C12G V1.00) | | starts. Inhibited when pump is Out of Service. | 10174 | 10EZSC405 | PUMP 4 CHK VLV | 02162 04279 | | | 47531 | | | | | | Sum all 4 pump runs to create an internal coil to indicate that at least 1 | | | | | | | | | 170 | CUSTOM | CUSTOM LOGIC - PUMP RUNNING | | pump is running. | | 10EPMP100 | PUMPS | CUSTOM DRAIN PUMPS LOGIC | Lead/Standby select logic allows Drain Pump 1 or 2 to be selected for | | | | | | | | | 171 | CUSTOM | CUSTOM LOGIC - DRAIN PUMPS LEAD/STANDBY SELECT LOGIC | | lead duty. | | 10EPD880 | DRN PUMPS | | | | | | | | | | When the Wetwell level is above the lead start setpoint, start the leard | | | | | | | | | 170 | CHSTOM | CUSTOM LOCIC DRAIN DUMPS START/STOR AUTORUN LOCIC | | Drain Pump. When the wetwell level is below the lead stop level, stop the lead Drain Pump. | | 100000 | DDN DUMDS | | | | | | 172 | CUSTOM | CUSTOM LOGIC - DRAIN PUMPS START/STOP AUTORUN LOGIC | | ਗਿੰਦ ਵਿਕਰ ਨੀ ਕੀਜੇ ਸੰਗਾਇ.
Start the Lead Drain pump (or Standby if Lead is unavailable) if none of | | 10EPC880 | DRN PUMPS | | | | | | | | | | the main pumps are running and the Knott Gate is closed and the level | | | | | | | | | 173 | CUSTOM | CUSTOM LOGIC - DRAIN PUMPS AUTORUN LOGIC | | in the wetwell exceeds the lead pump start level. | | 10EPC880 | DRN PUMPS | | | | | | 170 | 00010111 | COSTONIES SIGNATION STATEMENT SIGNATURE SIGNAT | | Drain pump 1 Winding High Temperature, inhibit if Drain pump 1 is out | | 1021 0000 | Brarr on C | | | | | | 174 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | of service. | 10053 | 10ETSH883 | DRN P1 MTR | 02164 04281 | | | 47532 | | 175 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Drain pump 1 High Moisture, inhibit if Drain pump 1 is out of service. | 10054 | 10EMSH884 | DRN P1 MTR | 02165 04283 | | | 47533 | | | | | | Place Drain pump 1 into the Wait Mode if the High Winding Temp or | | | | | | | | | 176 | CUSTOM | CUSTOM LOGIC - EXTERNAL WAIT MODE FOR DRAIN PUMP 1 | | High Moisture or Check Valve Fail to Open or Close Alarm are active. | | 10EPB880 | DRN P1 | | | | | | | | | | Combine High Winding Temp, High Moisture and Check Valve Fail to | | | | | | | | | | | | | Open or Close Alarms into a common alarm for Drain Pump 1 SWS- | | | | | | | | | | | CUSTOM LOGIC - EXTERNAL COMMON ALARM FOR DRAIN PUMP 1 | | C01. | | 10EPA880 | DRN P1 | 00465 | 0=:== | | 1100= | | 178 | | PUMP CONTROL, CONSTANT SPEED TEMPLATE LOGIC(SWS-C01 V1.30) | | Drain Pump 1. | 13 | 10EPMP880 | DRN P1 | 02166 04285 | | | 44205 47534 | | 179 | SWS-C13 | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Drain Pump 1. | 10050 | 10EYS880 | DRN P1 | 02174 | 07173 | | 44207 47535 | | 100 | CHCTOM | CHOTOM LOCIC DUMP 4 CHECK VALVE STATUS DISPLAY | | Converts the drain pump 1 check valve closed limit switch to a display | 10055 | 10570005 | DDN D4 OUR VIV | | | | | | 180 | CUSTOM | CUSTOM LOGIC - PUMP 1 CHECK VALVE STATUS DISPLAY | | word. Drain pump 1 check valve fail to open or close alarm. Inhibited when | 10055 | 10EZSC885 | DRN P1 CHK VLV | | | | | | 181 | SWS-C12G | DISCRETE ALARM W/RESET TEMPLATE LOGIC(MOD SWS-C12G V1.00) | | pump is Out of Service. | 10055 | 10EZSC885 | DRN P1 CHK VLV | 02175 04200 | | | 47536 | | 101 | 3770-0120 | DISSILIE ALAMMI VIALESET TEIMI LATE ESSIS(MISSISVIS-0126 V 1.00) | 1 | partip to Out of Ool vioo. | 10000 | 10120000 | DIGITI OHIO VEV | 02110 0 1 299 | | | 47 330 | | | | | | | | LOOP TAG | | F | REGISTE | R STARTING | ADDRES | S | |--------|------------|--|-----|--|----------|-----------|--|--------|---------|---------------|--------|-------| | BLOCK | TEMPLATE | | | | REGISTER | NUMBER | EQUIPMENT NAME | DO | DI | INT AO | Al | INT | | NUMBER | NAME | TEMPLATE PAGE TITLE DESCRIPTION | MOD | | NUMBER | (DESC1) | (DESC2) | 02xxx | 04xxx | 07xxx 42xxx | 44xxx | 47xxx | | | | | | Drain pump 2 Winding High Temperature, inhibit if Drain pump 2 is out | | | | | | | | | | 182 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | of service. | 10181 | 10ETSH893 | DRN P2 MTR | | 04301 | | | 47537 | | 183 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Drain pump 2 High Moisture, inhibit if Drain pump 2 is out of service. | 10182 | 10EMSH894 | DRN P2 MTR | 02178 | 04303 | | | 47538 | | | | | | Place Drain pump 2 into the Wait Mode if the High Winding Temp or | | | | | | | | | | 184 | CUSTOM | CUSTOM LOGIC - EXTERNAL WAIT MODE FOR DRAIN PUMP 2 | | High Moisture or Check Valve Fail to Open or Close Alarm are active. | | 10EPB890 | DRN P2 | | | | | | | | | | | Combine High Winding Temp, High Moisture and Check Valve Fail to | | | | | | | | | | | | | | Open or Close Alarms into a common alarm for Drain pump 2 SWS- | | | | | | | | | | 185 | | CUSTOM LOGIC - EXTERNAL COMMON ALARM FOR DRAIN PUMP 2 | | C01. | 4.5 | 10EPA890 | DRN P2 | 00.170 | 0.400= | 07171 | 11011 | 47500 | | 186 | | PUMP CONTROL, CONSTANT SPEED TEMPLATE LOGIC(SWS-C01 V1.30) | | Drain Pump 2. | 45 | 10EPMP890 | DRN P2 | | | 07174 | 44211 | | | 187 | SWS-C13 | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Drain Pump 2. | 10178 | 10EYS890 | DRN P2 | 02187 | | 07175 | 44213 | 47540 | | 400 | 0110-014 | CUSTOM LOGIC BUMB A CUEDICIAN F STATUS BIODIAN | | Converts the drain pump 2 check valve closed limit switch to a display | 10100 | 105700005 | DD11 D0 01 11 (1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 | | | | | | | 188 | CUSTOM | CUSTOM LOGIC - PUMP 1 CHECK VALVE STATUS DISPLAY | | word. | 10183 | 10EZSC895 | DRN P2 CHK VLV | | | | | | | 400 | 01410 0400 | DIOODETE ALABAMANDEGET TEMPLATE LOGICAMOD CARO VALCO | | Drain pump 2 check valve fail to open or close alarm. Inhibited when | 40400 | 105700005 | DDM DO OUWANA | 00400 | 0.4040 | | | 47544 | | 189 | SWS-C12G | DISCRETE ALARM W/RESET TEMPLATE LOGIC(MOD SWS-C12G V1.00) | Y | pump is Out of Service. | 10183 | 10EZSC895 | DRN P2 CHK VLV | 02188 | 04319 | | | 47541 | | | | DIGGUARGE PRESSURE AND ELOWA GOLO | | | | | | | | | | | | | | DISCHARGE PRESSURE AND FLOW LOGIC | Discharge pressure meter High and High High operate continuously, | | | | | | | | | | 190 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12A V1.30) | | Low and Low Low only operate when a main sewage pump is running. | 30029 | 10EPIT070 | DISCHARGE | | | | | | | 191 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Discharge flow meter trouble alarm | 10199 | 10EYS075B | DISCHARGE FLOW | | | | | | | 192 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Discharge flow meter. | 30020 | 10EFIT075 | DISCHARGE | | | | 44217 | | | 193 | SWS-C19 | TOTALIZER TEMPLATE LOGIC(SWS-C19 V1.11) | | Discharge flow meter totalizer. | 30020 | 10EFIT075 | DISCHARGE | | | 07176 | 44218 | 47549 | | | | | | | | | | | | | | | | | | DRYWELL SUMP PUMPS LOGIC | | | | | | | | | | | | 194 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Drywell High Level Alarm | 10114 | 10ELSH024 | DRYWELL FLOAT | 02190 | 04321 | | | 47575 | | 195 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Drywell Sumps 1 & 2 High Level Alarm | 10099 | 10ELSH029 | SUMP 1&2 FLOAT | | 04323 | | | 47576 | | 196 | | CUSTOM LOGIC - SUMP PUMP 1 RUN TO HMI | | Send On signal from Sump Pump 1 to HMI for display. | 10097 | 10EYS020 | SUMP PUMP 1 | | | | | | | 197 | | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Sump Pump 1 runtime. | 10097 | 10EYS020 | SUMP PUMP 1 | 02192 | | 07177 | 44228 | 47577 | | 198 | | CUSTOM LOGIC - SUMP PUMP 2 RUN TO HMI | | Send On signal from Sump Pump 2 to HMI for display. | 10209 | 10EYS025 | SUMP PUMP 2 | | | | | | | 199 | SWS-C13 | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Sump Pump 2 runtime. | 10209 | 10EYS025 | SUMP PUMP 2 | | | | | | | 200 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Sump Pumps 1 & 2 combined Trouble Alarms. | 10098 | 10EYS023B | SUMP PUMPS 1&2 | 02193 | 04325 | | | 47578 | | 201 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Drywell Sumps 3 & 4 High Level Alarm | 10227 | 10ELSH229 | SUMP 3&4 FLOAT | 02194 | 04327 | | | 47579 | | 202 | CUSTOM | CUSTOM LOGIC - SUMP PUMP 3 RUN TO HMI | | Send On signal from Sump Pump 3 to HMI for display. | 10113 | 10EYS220 | SUMP PUMP 3 | | | | | | |
203 | SWS-C13 | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Sump Pump 3 runtime. | 10113 | 10EYS220 | SUMP PUMP 3 | 02195 | | 07178 | 44232 | 47580 | | 204 | CUSTOM | CUSTOM LOGIC - SUMP PUMP 4 RUN TO HMI | | Send On signal from Sump Pump 4 to HMI for display. | 10225 | 10EYS225 | SUMP PUMP 4 | | | | | | | 205 | SWS-C13 | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Sump Pump 4 runtime. | 10225 | 10EYS225 | SUMP PUMP 4 | 02196 | | 07179 | 44236 | 47581 | | 206 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Sump Pumps 3 & 4 combined Trouble Alarms. | 10226 | 10EYS219B | SUMP PUMPS 3&4 | 02197 | 04329 | | | 47582 | | 207 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Drywell Smoke Alarm. | 10085 | 10EASH063 | DRYWELL | 02198 | 04331 | | | 47583 | | | | | | | | | | | | | | | | | | SUPPLY AND EXHAIST FANS LOGIC | | | | | | | | | | | | | | | | Lies the name number than to erect a name signal for the surely and | | | | | | | | | | | | | | Use the pause pushbuttons to create a pause signal for the supply and exhaust fans External Wait mode circuit, include an off delay timer to | | | | | | | | | | | | | | · · | | | | | | | | | | 200 | CUSTOM | CHETOM LOCIC CURRLY AND EVILABLET FAME DALICE | | hold keep fans off for an additional 10 seconds after the button is | 10107 | 105116050 | DDV/MELL EANS | | | | | | | 208 | CUSTOM | CUSTOM LOGIC - SUPPLY AND EXHAUST FANS PAUSE | | released. Lead/Standby select logic allows Supply Fan 1 or 2 to be selected for | 10197 | 10EHS059 | DRYWELL FANS | | | | | | | 200 | CUSTOM | CHETOM LOCIC SUPPLIVEANS LEAD/STANDBY SELECT LOCIC | | | | 10550052 | DDVWELL EANS | | | | | | | 209 | CUSTOM | CUSTOM LOGIC - SUPPLY FANS LEAD/STANDBY SELECT LOGIC | | lead duty. | | 10EFC053 | DRYWELL FANS | | | | - | | | 1 | | | | Based on HMI selection generate an auto run signal for the lead supply | | | | | | | | | | 210 | CUSTOM | CUSTOM LOGIC - SUPPLY FANS LEAD/STANDBY AUTORUN LOGIC | | fan. If the lead supply fan is in Wait Mode start the standby supply fan. | | 10EFB054 | DRYWELL FANS | | | | | | | 210 | COSTON | COSTOWILOGIC - SUFFLI FAINS LEAD/STAINDDI AUTURUN LUGIC | | Converts the supply fan 1 inlet damper opened and closed limit | | 10EF D004 | DUI MELL LAINS | | | | | | | 211 | CUSTOM | CUSTOM LOGIC - SUPPLY FAN 1 INLET DAMPER STATUS DISPLAY | | switches to a display word. | 10093 | 10EZSC099 | SF1 DMPR INLT | | | | | | | 411 | OUGION | OGGIGIN LOGIO - GOLI LI LAN I HILLI DAIVII LINGIATUG DIGELAT | | omitorios to a display word. | 10000 | 10020033 | OF F DIVIETA LINET | | | | | | | | | | | | | LOOP TAG | | R | EGISTE | ER STA | RTING A | DRESS | , | |------------|-----------|--|-----|--|-------------|------------------------|---------------------|-------|--------|--------|---------|-------|--------| | BLOCK | TEMPLATE | | | | REGISTER | NUMBER | EQUIPMENT NAME | DO | DI | INT | AO | | INT | | NUMBER | NAME | TEMPLATE PAGE TITLE DESCRIPTION | MOD | COMMENT | NUMBER | (DESC1) | (DESC2) | 02xxx | 04xxx | 07xxx | 42xxx | 44xxx | 47xxx | | | | | | Activate the Supply Fan 1 External Wait Mode if the Supply Fan's Low | | | | | | | | | | | | | | | Flow Alarm is active or if the Smoke Detector Alarm is active or if | | | | | | | | | | | | | | | neither Exhaust Fan's On signal indicates runinng or if both Exhaust | | | | | | | | | | | | | CUSTOM LOGIC - SUPPLY FAN 1 EXTERNAL WAIT MODE | | Fans' Low Flow Alarms are active. | | 10EFA053 | DRYWELL SF1 | | | | | | | | 213 | | PUMP CONTROL, CONSTANT SPEED TEMPLATE LOGIC(SWS-C01 V1.30) | | Drywell Supply Fan SF1 (remove buttons from graphic always in auto) | 4 | 10EFAN053 | DRYWELL SF1 | | 04333 | | | 44240 | | | 214 | SWS-C13 | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Drywell Supply Fan SF1 Runtime | 10089 | 10EYS053 | DRYWELL SF1 | 02207 | | 07181 | | 44242 | 47585 | | | | | | Converts the supply fan 1 outlet damper opened and closed limit | | | | | | | | | | | 215 | | CUSTOM LOGIC - SUPPLY FAN 1 OUTLET DAMPER STATUS DISPLAY | | switches to a display word. | 10073 | 10EZSC118 | SF1 DMPR OUTLT | | | | | | | | 216 | SWS-C12G | DISCRETE ALARM W/RESET TEMPLATE LOGIC(MOD SWS-C12G V1.00) | | Drywell Supply Fan SF1 Low Flow Alarm, inhibit if fan in not On. | 10092 | 10EFSL054 | DRYWELL SF1 | 02208 | 04347 | | | | 47586 | | 0.17 | 0110-014 | CUSTOM LOGIC CURRILY FAMOUNT ET DAMBER CTATUS RICHAY | | Converts the supply fan 2 inlet damper opened and closed limit | 40005 | 40570000 | 050 DMDD IN II T | | | | | | | | 217 | CUSTOM | CUSTOM LOGIC - SUPPLY FAN 2 INLET DAMPER STATUS DISPLAY | | switches to a display word. | 10205 | 10EZSC098 | SF2 DMPR INLT | | | | | | | | | | | | Activate the Supply Fan 2 External Wait Mode if the Supply Fan's Low | | | | | | | | | | | | | | | Flow Alarm is active or if the Smoke Detector Alarm is active or if | | | | | | | | | | | 040 | CLICTOM | OUOTOM LOGIO OUDDI VIEAN O EVTERNAL MAIT MODE | | neither Exhaust Fan's On signal indicates runinng or if both Exhaust | | 40554057 | DDVWELL OFO | | | | | | | | | | CUSTOM LOGIC - SUPPLY FAN 2 EXTERNAL WAIT MODE | | Fans' Low Flow Alarms are active. | 25 | 10EFA057 | DRYWELL SF2 | 00040 | 04040 | 07400 | | 44246 | 47507 | | 219 | | PUMP CONTROL, CONSTANT SPEED TEMPLATE LOGIC(SWS-C01 V1.30) | | Drywell Supply Fan SF2 (remove buttons from graphic always in auto) | 35
10201 | 10EFAN057 | DRYWELL SF2 | | 04349 | | | _ | | | 220 | SWS-C13 | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Drywell Supply Fan SF2 Runtime Converts the supply fan 2 outlet damper opened and closed limit | 10201 | 10EYS057 | DRYWELL SF2 | 02218 | | 07183 | 5 | 44248 | 47588 | | 224 | CUSTOM | CUSTOM LOGIC - SUPPLY FAN 2 OUTLET DAMPER STATUS DISPLAY | | switches to a display word. | 10207 | 10EZSC117 | SF2 DMPR OUTLT | | | | | | | | 221
222 | | | | Drywell Supply Fan SF2 Low Flow Alarm, inhibit if fan in not On. | 10207 | 10EZSC117
10EFSL058 | DRYWELL SF2 | 02210 | 04363 | | | | 47589 | | 222 | 3W3-C12G | DISCRETE ALARM W/RESET TEMPLATE LOGIC(MOD SWS-C12G V1.00) | | Based on HMI selection generate an auto run signal for the lead | 10204 | TUEFSLU36 | DRTWELL SF2 | 02219 | 04303 | | | | 47309 | | | | | | exhaust fan. If the lead exchaust fan is in Wait Mode start the standby | | | | | | | | | | | 223 | CUSTOM | CUSTOM LOGIC - EXHAUST FANS LEAD/STANDBY AUTORUN LOGIC | | exhaust fan. | | | | | | | | | | | 223 | COSTOW | COSTOM LOGIC - EXHAUST FANS LEAD/STANDET ACTORON LOGIC | | Converts the exhaust fan 1 inlet damper opened and closed limit | | | | | | | | | | | 224 | CUSTOM | CUSTOM LOGIC - EXHAUST FAN 1 INLET DAMPER STATUS DISPLAY | | switches to a display word. | 10125 | 10EZSC122 | EF1 DMPR INLT | | | | | | | | 227 | COCTOW | OCCIONI ECCIO - EXIMOCTITAN TINEET BANNI ENCOTATICO BIOI EXT | | Activate the Exhaust Fan 1 External Wait Mode if the Exhaust Fan's | 10120 | 101200122 | EI I DIVII IX IIVEI | | | | | | | | 225 | CUSTOM | CUSTOM LOGIC - EXHAUST FAN 1 EXTERNAL WAIT MODE | | Low Flow Alarm is active or if the Smoke Detector Alarm is active. | 226 | SWS-C01 | PUMP CONTROL, CONSTANT SPEED TEMPLATE LOGIC(SWS-C01 V1.30) | | Drywell Exhaust Fan EF1 (remove buttons from graphic always in auto) | 12 | 10EFAN051 | DRYWELL EF1 | 02221 | 04365 | 07184 | 1 | 44252 | 47590 | | 227 | | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Drywell Exhaust Fan EF1 Runtime | 10105 | 10EYS051 | DRYWELL EF1 | 02229 | | 07185 | | | 47591 | | 228 | SWS-C12G | DISCRETE ALARM W/RESET TEMPLATE LOGIC(MOD SWS-C12G V1.00) | Y | Drywell Exhaust Fan EF1 Low Flow Alarm, inhibit if fan in not On. | 10108 | 10EFSL052 | DRYWELL EF1 | 02230 | 04379 | | | | 47592 | | | | | | Converts the exhaust fan 2 inlet damper opened and closed limit | | | | | | | | | | | 229 | CUSTOM | CUSTOM LOGIC - EXHAUST FAN 2 INLET DAMPER STATUS DISPLAY | | switches to a display word. | 10228 | 10EZSC123 | EF2 DMPR INLT | | | | | | | | | | | | Activate the Exhaust Fan 2 External Wait Mode if the Exhaust Fan's | | | | | | | | | | | 230 | CUSTOM | CUSTOM LOGIC - EXHAUST FAN 2 EXTERNAL WAIT MODE | | Low Flow Alarm is active or if the Smoke Detector Alarm is active. | 231 | SWS-C01 | PUMP CONTROL, CONSTANT SPEED TEMPLATE LOGIC(SWS-C01 V1.30) | | Drywell Exhaust Fan EF2 (remove buttons from graphic always in auto) | | 10EFAN055 | DRYWELL EF2 | 02232 | 04381 | 07186 | 3 | 44258 | 47593 | | | | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Drywell Exhaust Fan EF2 Runtime | 10217 | 10EYS055 | DRYWELL EF2 | 02240 | | 07187 | 7 | 44260 | | | 233 | SWS-C12G | DISCRETE ALARM W/RESET TEMPLATE LOGIC(MOD SWS-C12G V1.00) | Υ | Drywell Exhaust Fan EF2 Low Flow Alarm, inhibit if fan is not On. | 10220 | 10EFSL056 | DRYWELL EF2 | 02241 | 04395 | | | | 47595 | | | | FOUL AID DOCOTED FANG LOOK | | <u> </u> | | | | | | | | | | | | | FOUL AIR BOOSTER FANS LOGIC | | | | | | | | | | | | | - | | | | Foul Air Booster Fan, add Low Flow Alarm to External Wait mode and | | | | | | | | | | | 226 | SWS CO1 | DI IMP CONTROL CONSTANT SPEED TEMPI ATE LOCIC/SMS CO1 1/1 201 | | External Common Alarm inputs. | 5 | 10EFAN170 | BOOSTER FAN | 02242 | 04397 | 07199 | 2 | 44264 | 17506 | | 236
237 | | PUMP CONTROL, CONSTANT SPEED TEMPLATE LOGIC(SWS-C01 V1.30) MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Foul Air Booster Fan | 10121 | 10EYS170 | BOOSTER FAN | 02243 | 04387 | 07189 | | 44266 | | | 238 | | DISCRETE ALARM W/RESET TEMPLATE LOGIC(MOD SWS-C12G V1.00) | | Foul Air Booster Fan Low Flow Alarm, inhibit when fan is off. | 10121 | 10EFSL171 | BOOSTER FAN | 02251 | 0//11 | 07 108 | , | | 47598 | | 239 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Gas Monitor High High Level alarm. | 10005 | | WW GAS MONITOR | | | | | | 47599 | | 240 | | DISCRETE SIGNAL TEMPLATE
LOGIC(SWS-C12F V1.10) | | Gas Monitor High Level alarm. | 10005 | | WW GAS MONITOR | | | | | | 47600 | | 241 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Gas Monitor Trouble alarm. | 10007 | | WW GAS MONITOR | | | | | | 47601 | | 271 | 3113 3121 | 5.55.7.2.1.2 5.51.7.1.2 1.21.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | | Gas Monitor common alarm, combine the High High and the High for | | 10210000 | 0,10 1010111011 | 02200 | 01717 | | | | ., 551 | | 242 | CUSTOM | CUSTOM LOGIC - GAS MONITOR COMMON TROUBLE ALARM | | the SWS-C12A. | | | | | | | | | | | | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12A V1.30) | | Gas Monitor, uses Hi and Hi Hi only. Inhibit alarms on failure. | 30003 | 10EAIT050 | WW GAS MONITOR | 02257 | 04419 | 07190 | 42115 | 44270 | 47602 | | | 0.2/ | | | , | | | | | | | | | | | | | | | | | LOOP TAG | | REG | ISTER ST | ARTING A | ADDRESS | |--------|----------|--|-----|--|----------|------------|----------------|----------|----------|----------|---------------| | BLOCK | TEMPLATE | | | | REGISTER | NUMBER | EQUIPMENT NAME | _ | DI IN | | AI INT | | NUMBER | NAME | TEMPLATE PAGE TITLE DESCRIPTION M | IOD | COMMENT | NUMBER | (DESC1) | (DESC2) | 02xxx 04 | xxx 07xx | x 42xxx | 44xxx 47xxx | | | | | | Combine the Gas Monitor Trouble Alarm, Hi Level Alarm, Hi Hi Level | | | | | | | | | | | | | Alarm, Supply Fan 1 On or Supply Fan 2 On, Exhaust Fan 1 On or | | | | | | | | | | | | I | Exhaust Fan 2 On, Supply Fan 1 Low Flow Alarm or Supply Fan 2 Low | | | | | | | | | | | | I | Flow Alarm, Exhaust Fan 1 Low Flow Alarm or Exhaust Fan 2 Low | | | | | | | | | | | | ı | Flow Alarm and Smoke Detector signals so that if any of these | | | | | | | | | | | | (| conditions change from their normal state the Safe to Enter output coil | | | | | | | | | | | | i | s turned off, resulting in the green light on the outside of the station | | | | | | | | | 244 | CUSTOM | CUSTOM LOGIC - SAFE TO ENTER PUMP STATION WARNING LIGHTS | | urning off and the red light turning on. | 11 | 10EYL042 | PUMP STATION | | | | | | | | ROOM AC LOGIC | | | | | | | | | | | | | ROOM AC LOGIC | | | | | | | | | | | 245 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | A/C System Temperature High | 10067 | 10ETSH064 | ACU SYSTEM | 02261 04 | | | 4761 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Control Room A/C Unit 1 Overload Alarm. | 10069 | 10EYS065B | ACU-1 SYSTEM | 02262 04 | 1431 | | 4761 | | | | CUSTOM LOGIC - AC UNIT 1 ON STATUS DISPLAY | | A/C Unit 1 On Status Display to HMI. | 10068 | 10EYS065 | ACU-1 SYSTEM | | | | | | | | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | | Control Room A/C Unit 1 Runtime. | 10068 | 10EYS065 | ACU-1 SYSTEM | 02263 | 071 | 95 | 44275 4761 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Control Room A/C Unit 2 Overload Alarm. | 10096 | 10EYS066B | ACU-2 SYSTEM | 02264 04 | 1433 | | 4762 | | 250 | CUSTOM | CUSTOM LOGIC - AC UNIT 2 ON STATUS DISPLAY | 1 | A/C Unit 2 On Status Display to HMI. | 10095 | 10EYS066 | ACU-2 SYSTEM | | | | | | 251 | SWS-C13 | MOTOR RUNTIME TEMPLATE LOGIC(SWS-C13 V1.02) | (| Control Room A/C Unit 2 Runtime. | 10095 | 10EYS066 | ACU-2 SYSTEM | 02265 | 071 | 96 | 44279 4762 | | | | BREAKER, TRANSFORMER, SWITCHGEAR AND UPS LOGIC | | | | | | | | | | | | | BREAKER, TRANSFORMER, SWITSHSEAR AND STOLESSOR | | | | | | | | | | | 252 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | ı | Breaker F37 Funct Fault/Trouble | 10110 | 10EYS115 | BREAKER F37 | 02266 04 | 1435 | | 4762 | | 253 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | 1 | Breaker F37 Lockout Trip | 10111 | 10EYS115A | BREAKER F37 | 02267 04 | 1437 | | 4762 | | | | CUSTOM LOGIC - BREAKER F37 CLOSED STATUS DISPLAY | | Breaker F37 Closed Status to HMI | 10109 | 10EZSC115 | BREAKER F37 | | - | | | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Transformer F37 Blown Fuse | 10101 | 10EYS119 | XFMR F37 DC SW | 02268 04 | 1439 | | 4762 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Transformer F37 Common Trouble | 10100 | 10EYS115B | XFMR F37 | 02269 04 | | | 4762 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Breaker F38 Funct Fault/Trouble | 10222 | 10EYS120 | BREAKER F38 | 02270 04 | | | 4762 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Breaker F38 Lockout Trip | 10223 | 10EYS120A | BREAKER F38 | 02271 04 | | | 4762 | | | | CUSTOM LOGIC - BREAKER F38 CLOSED STATUS DISPLAY | | Breaker F38 Closed Status to HMI | 10221 | 10EZSC120 | BREAKER F38 | OZZII O | 1110 | | 1702 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Fransformer F38 Blown Fuse | 10211 | 10EYS124 | XFMR F38 DC SW | 02272 04 | 1447 | | 47628 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Transformer F38 Common Trouble | 10210 | 10EYS120B | XFMR F38 | 02272 04 | | | 47629 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Switchgear 125VDC Charger Trouble | 10212 | 10EYS115C | SWG 125VDC CHG | | | | 4763 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Switchgear HRGU1 Trouble | | | | | | | | | | | | | | 10082 | 10EYS125 | SWG HRGU1 | 02275 04 | 1453 | | 4763 | | | | CUSTOM LOGIC - SWITCHGEAR MAIN BREAKER A STATUS DISPLAY | | Switchgear Circuit Breaker A Closed Status to HMI. | 10083 | 10EZSC125 | SWG CKT BKR A | | | | | | | | CUSTOM LOGIC - SWITCHGEAR TIE-BREAKER A STATUS DISPLAY | | Switchgear Tie-Breaker A Closed Status to HMI. | 10084 | 10EZSC125A | SWG TIE BKR A | 00070 | | | 4700 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Switchgear HRGU2 Trouble | 10194 | 10EYS125A | SWG HRGU2 | 02276 04 | 1455 | | 4763 | | | | CUSTOM LOGIC - SWITCHGEAR MAIN BREAKER B STATUS DISPLAY | | Switchgear Circuit Breaker B Closed Status to HMI. | 10195 | 10EZSC125C | | | | | | | | | CUSTOM LOGIC - SWITCHGEAR TIE-BREAKER B STATUS DISPLAY | | Switchgear Tie-Breaker B Closed Status to HMI. | 10196 | 10EZSC125B | | | | | | | | | CUSTOM LOGIC - SWITCHGEAR TRANSFER MODE STATUS DISPLAY | | Switchgear Transfer Mode Auto Status to HMI. | 10115 | | SWG TRANS MOD | | | | | | | | CUSTOM LOGIC - SWITCHGEAR POWER SOURCE BUS A STATUS DISPLAY | | Switchgear Power Source Bus A Status to HMI. | 10116 | | SWG PWR SOURCE | | | | | | | | CUSTOM LOGIC - SWITCHGEAR POWER SOURCE NORMAL STATUS DISPLAY | | Switchgear Power Source Normal Status to HMI. | 10117 | | SWG PWR SOURCE | | | | | | 272 | | CUSTOM LOGIC - SWITCHGEAR POWER SOURCE BUS B STATUS DISPLAY | | Switchgear Power Source Bus B Status to HMI. | 10118 | | SWG PWR SOURCE | | | | | | 273 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Switchgear Power Monitor Bus A Power Failure Status to HMI | 10081 | 10EYS125B | PWR MON BUS A | 02277 04 | 1457 | | 4763 | | 274 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Switchgear Power Monitor Bus B Power Failure Status to HMI | 10193 | 10EYS126B | PWR MON BUS B | 02278 04 | 1459 | | 4763 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Switchgear Power Monitor MCC A Power Failure Status to HMI | 10057 | 10EYS129B | | 02279 04 | 1461 | | 4763 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Switchgear Power Monitor MCC B Power Failure Status to HMI | 10184 | 10EYS130B | | 02280 04 | | | 4763 | | 277 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Switchgear Power Monitor Future Power Failure Status to HMI | 10058 | | PWR MON FUTURE | 02281 04 | 465 | | 4763 | | 278 | CUSTOM | CUSTOM LOGIC - SWITCHGEAR MCC-A FEEDER BREAKER STATUS DISPLAY | | Switchgear MCC-A Feeder Breaker Status to HMI | 10102 | 10EZSC129 | SWG FDR MCC A | | | | | | 279 | | CUSTOM LOGIC - SWITCHGEAR MCC-B FEEDER BREAKER STATUS DISPLAY | | Switchgear MCC-B Feeder Breaker Status to HMI | 10214 | 10EZSC130 | SWG FDR MCC B | | | | | | 280 | CUSTOM | CUSTOM LOGIC - SWITCHGEAR FUTURE FEEDER BREAKER STATUS DISPLAY | | Switchgear Future Feeder Breaker Status to HMI | 10103 | 10EZSC165 | SWG FDR SPARE | | | | | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | l | JPS AC Line Fail Alarm | 10071 | 10EJSL060J | UPS AC LINE | 02282 04 | 1467 | | 4763 | | 282 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | l | JPS Bypass Alarm | 10070 | 10EYS060J | UPS BYPASS | 02283 04 | 1469 | | 4763 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | l | JPS Trouble Alarm | 10056 | 10EYS060B | UPS INV | 02284 04 | | | 47640 | | | | PANEL ALARM LOGIC | - · · · · · · · · · · · · · · · · · · · | | LOOP TAG | | R | EGISTE | R STARTING ADD | DRESS | |------------|----------|--|-----|--|----------|------------------------|-------------------------------|-------|--------|--------------------|--------| | | TEMPLATE | | | | REGISTER | NUMBER | EQUIPMENT NAME | DO | DI | | AI INT | | NUMBER | | TEMPLATE PAGE TITLE DESCRIPTION | MOD | COMMENT | NUMBER | (DESC1) | \ - / | | | 07xxx 42xxx 44 | | | 284 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | UPS Low Battery Alarm | 10072 | 10EESL060 | UPS BATTERY | 02285 | | | 47641 | | 285 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | LCP panel Instrument Power Supply Fail Alarm | 10066 | 10EJSL068J | INST PWR PLC | 02286 | | | 47642 | | 286 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | RIO A panel Instrument Power Supply Fail Alarm | 10086 | 10EJSL068K | INST PWR RIO A | 02287 | | | 47643 | | 287 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | RIO B panel Instrument Power Supply Fail Alarm | 10198 | 10EJSL068L | INST PWR RIO B | 02288 | 04479 | | 47644 | | | | PUMPS 1 THRU 4 CLEANING CYCYLE LOGIC | | | |
 | | | | | | | | | | First create three coils to ensure each of the three pumps is in the | | | | | | | | | | | | | correct mode for the cleaning cycle. Pump 1 must be in the | | | | | | | | | | | | | Auto(Auto/Manual)/Auto(On/Off/Auto) mode with no Wait Mode | | | | | | | | | | | | | conditions. Pumps 2 and 3 must be in the Off Mode or the | | | | | | | | | | | | | Auto(On/Off/Auto) Mode or the Out Of Service Mode. The Wetwell | | | | | | | | | | | | | must not have a High Float Level Alarm or Hi Hi or Hi Active Level | | | | | | | | | | | | | Alarm. The Ultrasonic Transmitter cannot have a Trouble Alarm or be | | | | | | | | | | | | | Out of Service or have any of the Pump 1 to 3 Start Alarms active. | | | | | | | | | | | | | The Recycle Valve cannot be Out Of Service. The station flow through | | | | | | | | | | | | | the discharge flowmeter must be less than the hard coded cutoff. If | | | | | | | | | | | | | any condition becomes active after the cleaning cycle begins (except | | | | | | | | | 288 | CUSTOM | CUSTOM LOGIC - INTERNAL CLEANING CYCLE DISABLE | | the high flow cutoff) the internal disable is energized and the cleaning cycle aborted. | 18 | 10EYL560P | CLEANING LCP | | | | | | 200 | COSTOW | COSTON LOGIC - INTERNAL CLEANING CTCLE DISABLE | | Display the Activated light if the Cleaning Cycle Activate logic is on. | 10 | 10E1L300F | CLEANING LCF | | | | | | | | | | Display the Cleaning Cycle Disabled status on the LCP Panel if the | | | | | | | | | 289 | CUSTOM | CUSTOM LOGIC - CLEANING CYCLE STATUS DISPLAYS ON LCP PANEL | | internal cleaning cycle disabled logic from the previous network is on. | 17 | 10EYL560J | CLEANING LCP | | | | | | | | | | Display the Activated and Ready statuses based on the associated | | | | | | | | | 290 | CUSTOM | CUSTOM LOGIC - CLEANING CYCLE STATUS DISPLAYS ON LCP-A PANEL | | logic at the beginning of this program on the LCP-A Panel. | 19 | 10EYL560N | CLEANING LCPA | | | | | | | | | | Display the Prepared to Clean, Started Clean Cycle and Ended Cycle | | | | | | | | | | | | | based on the associated logic at the beginning of this program on the | | | | | | | | | 291 | | CUSTOM LOGIC - CLEANING CYCLE STATUS DISPLAYS ON LCP-A PANEL | | LCP-A Panel. | 20 | 10EYL560K | CLEANING LCPA | | | | | | 292 | | CUSTOM LOGIC - PUMP 1 ON STATUS DISPLAYED ON LCP-A PANEL | | Display the Pump 1 On status at the LCP-A cleaning panel. | 24 | 10EYL100L | PUMP 1 LCPA | | | | | | 293 | | CUSTOM LOGIC - PUMP 2 ON STATUS DISPLAYED ON LCP-A PANEL | | Display the Pump 2 On status at the LCP-A cleaning panel. | 25 | 10EYL200L | PUMP 2 LCPA | | | | | | 294 | | CUSTOM LOGIC - PUMP 3 ON STATUS DISPLAYED ON LCP-A PANEL | | Display the Pump 3 On status at the LCP-A cleaning panel. Display the Pump 4 On status at the LCP-A cleaning panel. | 26
27 | 10EYL300L | PUMP 4 LOPA | | | | | | 295
296 | | CUSTOM LOGIC - PUMP 4 ON STATUS DISPLAYED ON LCP-A PANEL CUSTOM LOGIC - ANALOG ACTIVE LEVEL DISPLAY TO DRYWELL | | Output the Active Level value to a display in the Drywell. | 40002 | 10EYL400L
10ELI034A | PUMP 4 LCPA
WW ACT DRYWELL | | | | | | 297 | | CUSTOM LOGIC - ANALOG ACTIVE LEVEL DISPLAY TO ELECTRICAL ROOM | | Output the Active Level value to a display in the Electrical Room. | 40002 | 10ELI034A | WW ACT ELEC RM | | | | | | 201 | COCTON | OCCION ECCIO - ANALECCA ACTIVE EL VEL BIOI EXT TO ELECTRICAL ROCIN | | Output the Active Level value to a display on the front of the LCP-A | 10000 | TOLLIOO-ID | WWW NOT LLLOTW | | | | | | 298 | CUSTOM | CUSTOM LOGIC - ANALOG ACTIVE LEVEL DISPLAY TO LCP-A | | panel. | 40003 | 10ELI034D | WW ACT LCPA | | | | | | | | | | Output the Discharge Flow value to a display on the front of the LCP-A | | | | | | | | | 299 | CUSTOM | CUSTOM LOGIC - ANALOG DISCHARGE FLOW DISPLAY TO LCP-A | | panel. | 40004 | 10EFI075A | DISCHARGE LCPA | | | | | | | | | | Convert the Pumps Speed Setpoint from engineering units to a raw | | | | | | | | | 300 | CUSTOM | CUSTOM LOGIC - CONVERT ENGINEERING UNITS PUMP SPEED TO RAW | | value that can be sent to the LCP-A display. | | | | | | | | | 004 | OLIOTOM | CHOTOM LOGIC BUMBO OBEED DIODI AVITO LODIA | | Output the Pumps Speed value to a display on the front of the LCP-A | 40007 | 40501500 | DUMBO LODA | | | | | | 301 | CUSTOM | CUSTOM LOGIC - PUMPS SPEED DISPLAY TO LCP-A | | panel. | 40007 | 10ESI560 | PUMPS LCPA | | | | | | | | POWER MONITOR READING FOR INFORMATION DISPLAY AND ALARMIN | IG | 302 | | CUSTOM LOGIC - SEND BUS-A VOLTAGE READING FROM POWER MONITOR TO HMI | | Transfer the Voltage reading from the power monitor to the HMI | | | | | | | | | 303 | | CUSTOM LOGIC - SEND BUS A WATTS BEADING FROM POWER MONITOR TO HMI | | Transfer the Current reading from the power monitor to the HMI Transfer the Watts reading from the power monitor to the HMI | | | | | | | | | 304 | CUSTOM | CUSTOM LOGIC - SEND BUS-A WATTS READING FROM POWER MONITOR TO HMI | | Transfer the watts reading from the power monitor to the Hilli Transfer the accumulated Watt-HR reading from the power monitor to | | | | | | | | | 305 | CUSTOM | CUSTOM LOGIC - SEND BUS-A WATT-HR READING FROM POWER MONITOR TO HMI | | the HMI | | | | | | | | | 306 | | CUSTOM LOGIC - SEND BUS-A WATT-TIK READING FROM POWER MONITOR TO HMI | | Transfer the VA-HR reading from the power monitor to the HMI | | | | | | | | | 307 | | CUSTOM LOGIC - SEND BUS-B VOLTAGE READING FROM POWER MONITOR TO HMI | | Transfer the Voltage reading from the power monitor to the HMI | | | | | | | | | 308 | | CUSTOM LOGIC - SEND BUS-B CURRENT READING FROM POWER MONITOR TO HMI | | Transfer the Current reading from the power monitor to the HMI | | | | | | | | | 309 | | CUSTOM LOGIC - SEND BUS-B WATTS READING FROM POWER MONITOR TO HMI | | Transfer the Watts reading from the power monitor to the HMI | | | | | | | | | | | | | Transfer the accumulated Watt-HR reading from the power monitor to | | | | | | | | | 310 | CUSTOM | CUSTOM LOGIC - SEND BUS-B WATT-HR READING FROM POWER MONITOR TO HMI | | the HMI | | | | | | | | | | | | | | | LOOP TAG | | F | REGIST | ER STAR | TING AD | DRESS | | |--------|-----------|--|-----|--|----------|----------|----------------|-------|--------|---------|-----------|------------------------|-------| | BLOCK | TEMPLATE | | | | REGISTER | | EQUIPMENT NAME | DO | DI | INT | AO | AI IN | | | NUMBER | NAME | TEMPLATE PAGE TITLE DESCRIPTION | MOD | COMMENT | NUMBER | (DESC1) | (DESC2) | 02xxx | 04xxx | 07xxx | 42xxx 4 | 44xxx 47x | СХХ | | | CUSTOM | CUSTOM LOGIC - SEND BUS-B VA-HR READING FROM POWER MONITOR TO HMI | | Transfer the VA-HR reading from the power monitor to the HMI | | | | | | | | | | | | CUSTOM | CUSTOM LOGIC - SEND MCC-A VOLTAGE READING FROM POWER MONITOR TO HMI | | Transfer the Voltage reading from the power monitor to the HMI | | | | | | | | | | | | | CUSTOM LOGIC - SEND MCC-A CURRENT READING FROM POWER MONITOR TO HMI | | Transfer the Current reading from the power monitor to the HMI | | | | | | | | | | | 314 | CUSTOM | CUSTOM LOGIC - SEND MCC-A WATTS READING FROM POWER MONITOR TO HMI | | Transfer the Watts reading from the power monitor to the HMI | | | | | | | | | | | | | | | Transfer the accumulated Watt-HR reading from the power monitor to | | | | | | | | | | | | CUSTOM | CUSTOM LOGIC - SEND MCC-A WATT-HR READING FROM POWER MONITOR TO HMI | | the HMI | | | | | | | | | | | | CUSTOM | CUSTOM LOGIC - SEND MCC-A VA-HR READING FROM POWER MONITOR TO HMI | | Transfer the VA-HR reading from the power monitor to the HMI | | | | | | | | | | | 317 | CUSTOM | CUSTOM LOGIC - SEND MCC-B VOLTAGE READING FROM POWER MONITOR TO HMI | | Transfer the Voltage reading from the power monitor to the HMI | | | | | | | | | | | 318 | CUSTOM | CUSTOM LOGIC - SEND MCC-B CURRENT READING FROM POWER MONITOR TO HMI | | Transfer the Current reading from the power monitor to the HMI | | | | | | | | | | | 319 | CUSTOM | CUSTOM LOGIC - SEND MCC-B WATTS READING FROM POWER MONITOR TO HMI | | Transfer the Watts reading from the power monitor to the HMI | | | | | | | | | | | | | | | Transfer the accumulated Watt-HR reading from the power monitor to | | | | | | | | | | | 320 | CUSTOM | CUSTOM LOGIC - SEND MCC-B WATT-HR READING FROM POWER MONITOR TO HMI | | the HMI | | | | | | | | | | | 321 | CUSTOM | CUSTOM LOGIC - SEND MCC-B VA-HR READING FROM POWER MONITOR TO HMI | | Transfer the VA-HR reading from the power monitor to the HMI | | | | | | | | | | | 322 | SWS-C12C | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 1 VFD phase A current. | | | | | | | | 44283 476 | | | 323 | SWS-C12C | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 1 VFD phase B current. | | | | | | | 4 | 44284 476 | 652 | | 324 | SWS-C12C | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 1 VFD phase C current. | | | | | | | 4 | 44285 476 | 659 | | | | | | Pump 1 VFD Trouble Alarm (remove from logic at later date if identical | | | | | | | | | | | 325 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | to hard wired alarm) | | | | 02289 | 04481 | | | 476 | 666 | | 326 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 1 VFD Overtemperature Alarm | | | | 02290 | 04483 | 3 | | 476 | 667 | | 327 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 1 VFD Low DC Voltage Alarm | | | | | 04485 | | | 476 | | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 1 VFD Output SCR Fail | | | | | 04487 | | | 476 | | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 1 VFD Input Overvoltage | | | | | 04489 | | | 476 | | | 330 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 2 VFD phase A current. | | | | 00 | 000 | | | 44286 476 | | | 331 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 2 VFD phase B current. | | | | | | | | 44287 476 |
 | 332 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 2 VFD phase C current. | | | | | | | | 44288 476 | | | 002 | 0110 0120 | THE WORK TELL CHOICE TELM ENTE EGGIO (OVIC G12G V 1.02) | | Pump 2 VFD Trouble Alarm (remove from logic at later date if identical | | | | | | | | 11200 170 | 300 | | 333 | SWS_C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | to hard wired alarm) | | | | 02204 | 04491 | 1 | | 476 | 602 | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 2 VFD Overtemperature Alarm | | | | | 04493 | | | 476 | | | 335 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 2 VFD Low DC Voltage Alarm | | | | | 04495 | | | 476 | | | 336 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 2 VFD Output SCR Fail | | | | | 04497 | | | 476 | | | 337 | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 2 VFD Input Overvoltage | | | | | 04499 | | | 476 | | | 338 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 3 VFD phase A current. | | | | 02230 | 07733 | | | 44289 476 | | | 339 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 3 VFD phase B current. | | | | | | | | 44290 477 | | | 340 | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 3 VFD phase C current. | | | | | | | | 44290 477
44291 477 | | | 340 | 3003-0120 | TRANSWITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 3 VFD Trouble Alarm (remove from logic at later date if identical | | | | | | | | 14291 477 | 7 1 1 | | 2/1 | CWC C12E | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | to hard wired alarm) | | | | 02200 | 04501 | | | 477 | 710 | | | | | | Pump 3 VFD Overtemperature Alarm | | | | | 04503 | | | 477 | | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 3 VFD Low DC Voltage Alarm | | | | | | _ | | | | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | | | | | | 04505 | | | 477 | | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 3 VFD Output SCR Fail | | | | | 04507 | | | 477
477 | | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 3 VFD Input Overvoltage | | | | 02303 | 04509 | 1 | | | | | | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 4 VFD phase A current. | | | | | | | | 44292 477 | | | | | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 4 VFD phase B current. | | | | | | | | 44293 477 | | | 348 | SWS-C12C | TRANSMITTER SIGNALS TEMPLATE LOGIC(SWS-C12C V1.02) | | Pump 4 VFD phase C current. | | | | | | | - 4 | 44294 477 | /3/ | | | | | | Pump 4 VFD Trouble Alarm (remove from logic at later date if identical | | | | | | - | | | | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | to hard wired alarm) | | | | | 04511 | | | 477 | | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 4 VFD Overtemperature Alarm | | | | | 04513 | | | 477 | | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 4 VFD Low DC Voltage Alarm | | | | | 04515 | | | 477 | | | | | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 4 VFD Output SCR Fail | | | | | 04517 | | | 477 | | | 353 | SWS-C12F | DISCRETE SIGNAL TEMPLATE LOGIC(SWS-C12F V1.10) | | Pump 4 VFD Input Overvoltage | | | | 02308 | 04519 |) | | 477 | 748 | | | | | | Read the Power Monitor electrical parameters that need to be | | | | | | | | | | | 354 | CUSTOM | CUSTOM LOGIC - MODBUS+ MSTR READ FROM BUS-A POWER MONITOR | | monitored. | | | | | | | | | | | | | | | Read the Power Monitor electrical parameters that need to be | | | | | | | | | | | 355 | CUSTOM | CUSTOM LOGIC - MODBUS+ MSTR READ FROM BUS-B POWER MONITOR | | monitored. | | | | | | | | | | | | | | | Read the Power Monitor electrical parameters that need to be | | | | | | | | | | | 356 | CUSTOM | CUSTOM LOGIC - MODBUS+ MSTR READ FROM MCC-A POWER MONITOR | | monitored. | | | | | | | | | | | | | | | Read the Power Monitor electrical parameters that need to be | | | | | | | | | Į. | | 357 | CUSTOM | CUSTOM LOGIC - MODBUS+ MSTR READ FROM MCC-B POWER MONITOR | | monitored. | | | | | | | | | , | | | | | | | | LOOP TAG | | R | REGISTE | R STAR | TING AD | DRESS | |--------|----------|--|-----|---|----------|----------|----------------|-------|---------|--------|-----------|--------------| | BLOCK | TEMPLATE | | | | REGISTER | NUMBER | EQUIPMENT NAME | DO | DI | INT | AO | AI INT | | NUMBER | NAME | TEMPLATE PAGE TITLE DESCRIPTION | MOD | COMMENT | NUMBER | (DESC1) | (DESC2) | 02xxx | 04xxx | 07xxx | 42xxx 4 | 4xxx 47xxx | | | | | | Read the Pump 1 VFD electrical parameters that need to be | | | | | | | | | | 358 | CUSTOM | CUSTOM LOGIC - MODBUS+ MSTR READ FROM PUMP 1 VFD | | monitored. | | | | | | | | | | | | | | Read the Pump 2 VFD electrical parameters that need to be | | | | | | | | | | 359 | CUSTOM | CUSTOM LOGIC - MODBUS+ MSTR READ FROM PUMP 2 VFD | | monitored. | | | | | | | | | | | | | | Read the Pump 3 VFD electrical parameters that need to be | | | | | | | | | | 360 | CUSTOM | CUSTOM LOGIC - MODBUS+ MSTR READ FROM PUMP 3 VFD | | monitored. | | | | | | | | | #### 17410 Attachment E #### Section 01810 Commissioning #### **PART 1 - GENERAL** #### 1.1 SUMMARY - A. This section identifies the requirements for pre-commissioning and commissioning activities for all electrical, mechanical, instrumentation, control and process equipment. This section ties together the many activities defined in other Specifications sections that are required to be performed and completed during pre-commissioning and commissioning and provides the overall requirements for the pre-commissioning and commissioning process. - B. Provide all personnel, tools, labor, equipment, materials, documentation, testing piping, devices, and equipment for testing, pre-commissioning, and commissioning activities. The CONTRACTOR shall provide proper planning, notification, scheduling, and coordination for all activities. #### 1.2 RELATED WORK SPECIFIED UNDER OTHER SECTIONS: - A. The requirements of the following sections and divisions apply to the Work of this section. Other sections and divisions of the Specifications, not referenced below, shall also apply to the extent required for proper performance of this Work. - 1. Section 01300, Contractor's Construction Schedule and Reports - 2. Section 01783, Equipment Service Manuals - 3. Section 01811, Commissioning Dashboard - 4. Section 01820, Training of OC SAN Personnel - 5. Division 08710, Finish Hardware - 6. Section 10400, Identifying Devices - 7. Division 11, Equipment - 8. Section 11910, Diesel-Fueled Standby Engine-Generator Set - 9. Section 13500. Closed Circuit Television CCTV - 10. Section 13700, Access Control and Alarm Monitoring System - 11. Section 13850, Fire Alarm System - 12. Division 14, Conveying System - 13. Division 15, Mechanical - 14. Section 16080, Electrical Testing - 15. Division 16, Electrical, other applicable sections - 16. Division 17, Instrumentation and Control #### 1.3 DEFINITIONS - A. <u>Certificate of Proper Installation (COPI)</u>: A written report signed by a trained and qualified representative of the manufacturer certifying that each equipment specified in Divisions 8, 10, 11, 13, 14, 15, 16 and 17 is installed properly in accordance with the manufacturer's installation instructions. - B. <u>Certificate of Proper Operation (COPO):</u> A written report signed by a trained and qualified representative of the manufacturer certifying that each equipment specified in Divisions 8, 10, 11, 13, 14, 15, 16 and 17 is properly installed and lubricated, accurately aligned, free from any undue stress imposed by connecting piping or anchor bolts, has been operated under full load conditions and operates in accordance with specified requirements. - C. <u>Commissioning:</u> All pre-operational, operational, functional, reliability and field performance tests, including pre-ORT, ORT, FAT, RAT, and PAT, that demonstrate the proper function, operation, performance and configuration of the equipment and systems. - D. <u>Commissioning Dashboard:</u> A spreadsheet tracking tool developed, used and maintained by the CONTRACTOR, as defined in Section 01811, and shared with the ENGINEER to track that status and progress of all pre-commissioning and commissioning activities identified in this section and in Tables 1a and 1b. - E. <u>Commissioning Package:</u> A group of equipment, devices, and accessories that have dependencies on one another, operate together to perform a function, will be precommissioned and commissioned together, and will be tested as a system during operational readiness testing (ORT), functional acceptance testing (FAT) and reliability acceptance testing (RAT). All equipment installed, modified or connected under this Contract (including connections to existing equipment) shall be part of a commissioning package. - F. Functional Acceptance Test (FAT): Tests equipment and instrument operation and shutdowns under load (in REMOTE MANUAL mode of operation) using process fluid (water, air, etc.) to verify proper functionality. Tests equipment and systems in REMOTE AUTOMATIC and AUTOMATIC modes of operation with software and water (as defined in the procedure or Part 3) or other process fluid to simulate normal operating conditions. Test automatic transfer switches with normal and standby power sources. Test medium-voltage and low-voltage switchgear by simulating incoming voltage to the protective devices. For non-process systems, test the functionality of the system using actual conditions (i.e., fire alarm system, access control system, HVAC, battery chargers, automatic transfer switches, uninterruptible power supplies, generators, etc.). - G. <u>Gate Report:</u> A report that documents the results of pre-commissioning and commissioning and is accepted by the ENGINEER prior to the CONTRACTOR's authorization to proceed to the next phase of
commissioning. See Part 1, Article entitled "Gate Reports" of this section for content requirements. - H. <u>Operational Readiness Test (ORT):</u> Tests equipment, instrumentation, wiring, hardware, and software without water or any other process fluid in the LOCAL, HAND and REMOTE MANUAL modes of operation. - I. <u>Performance Acceptance Test (PAT):</u> A test executed by OC SAN after substantial completion to verify that the process system operates in accordance with the designed minimum and maximum performance requirements. - J. <u>Pre-Commissioning:</u> All activities that are required to be completed prior to the start of commissioning. This includes all equipment checks and testing, loop checks (witnessed and unwitnessed) and the pre-commissioning Gate Report. - K. Reliability Acceptance Test (RAT): A test to check that the system can operate continuously in the intended manner for an extended period without failure. During the RAT, the system under test shall be operated within design parameters reflecting the day-to-day operation of the facilities for an uninterrupted period. - L. <u>System:</u> A group of equipment, instruments, devices, and piping that is part of an overall process, electrical distribution, or a portion thereof, and performs a specific function. #### 1.4 SUBMITTALS - A. Submit the following information in addition to instrument, device, and equipment testing reports and submittals required in other Specifications sections: - 1. Resumes for the Commissioning Coordinator and Commissioning Team Leaders. - 2. Manufacturer Services: Submit a letter from the manufacturers (forty-five (45) days prior to performing the service) stating that each proposed manufacturers' representative who will perform services is qualified, trained and has experience performing the required services. - 3. FDT procedures - 4. Final sample test and certification documentation forms - 5. Commissioning Overview - a. Commissioning Plans for each commissioning package - b. Calibration: - (1) Credentials and certification of the person proposed by the CONTRACTOR for calibration of all instruments. - (2) Sample calibration forms, showing pass/fail ranges, that will be used as a template. - (3) Calibration documentation for test equipment. Calibration documentation must be submitted and accepted by the ENGINEER prior to use of test equipment and after each annual calibration. - c. Meeting minutes (via e-mail only, not as a construction submittal) - d. Schedule: - (1) Commissioning schedule with required updates - (2) Three (3)-week commissioning activity look ahead schedule with required updates - 6. Record Keeping System and Tracking Tools: Submit sample for acceptance and updates on the required intervals the following tracking spreadsheets: - a. Lock-out and tag-out procedures - b. 480V and greater conductor testing/torquing/energization - c. Instrumentation, control and alarm circuit conductor testing - d. Wire tag/loop check - e. Instrumentation calibration - f. Manufacturer services - g. Electronic configuration files - h. Individual equipment service manuals - i. Post-energization electrical testing - 7. Lock-out and Tag-out Procedures and Policies that will be used by the CONTRACTOR during pre-commissioning and commissioning. Procedures shall be updated to reflect any changes. - 8. Gate Reports: Submit within thirty (30) days after completion of the last required for the associated Gate Report. - B. Submit instrument, device, and equipment testing reports required in other Specifications sections within thirty (30) days after completion of testing. - C. Final punch list items. - D. Final as-built drawings. - 1.5 PROJECT COMMISSIONING GROUP - A. CONTRACTOR'S Project Commissioning Group - 1. Assemble a Commissioning Group consisting of the Commissioning Coordinator, Commissioning Team Leaders for ORT and FAT (see ENGINEER responsibilities below for the maximum number of Commissioning Teams allowed), commissioning team members, support staff, technical support personnel from the CONTRACTOR and Subcontractor, CONTRACTOR'S Training Representative (in accordance with Section 01820, Training of OC SAN Personnel), and separate leads for mechanical, electrical and instrumentation. - 2. CONTRACTOR's Commissioning Teams shall perform commissioning activities and procedures with the ENGINEER. - 3. Working with the Commissioning Coordinator, the mechanical, electrical and instrumentation leads shall be responsible for confirming Work is complete and ready for witnessed loop checks and commissioning, overseeing pre-commissioning and troubleshooting activities, and verifying the resolution of punch list items and issues. - 4. Commissioning Teams shall be available at the Work site during normal working hours (eight (8) hours a day, five (5) days a week, except Saturdays, Sundays and OC SAN holidays) and shall be available onsite within two (2) hours after being notified at all other times. This team shall be equipped and always ready to provide emergency repairs and make required adjustments and corrections to the equipment and systems installed and modified by this Contract. #### B. CONTRACTOR's Commissioning Coordinator #### Qualifications a. The Commissioning Coordinator shall be [independent of the CONTRACTOR and any of the suppliers, hired by the CONTRACTOR and] accepted by the ENGINEER within sixty (60) days from the effective date of the Notice to Proceed. The Commissioning Coordinator will be interviewed upon acceptance of the Commissioning Coordinator's resume as part of the acceptance process. The Commissioning Coordinator shall be experienced in all activities related to pre-commissioning and commissioning, including all facility operations, tests, adjustments and measurements. The Commissioning Coordinator shall have a minimum of [five (5)] [ten (10)] years of experience in operations and commissioning of facilities of similar type, size, and capacity. The Commissioning Coordinator shall be experienced in all aspects of planning, documentation, testing, pre-commissioning, and commissioning. #### 2. Responsibilities: - a. Be authorized by the CONTRACTOR to manage, lead, schedule, and direct the Commissioning Team and all testing, pre-commissioning and commissioning activities. - b. Pre-Commissioning and Commissioning Plan and Documents: - (1) Develop and implement the Commissioning Plan. - (2) Update the Commissioning Plan and associated field copies with any changes that occur. - (3) Review and finalize pre-ORT, ORT and FAT procedures provided by OC SAN in Attachment A. - (4) Develop pre-ORT, ORT, FAT and RAT procedures for equipment that have not been provided by OC SAN. - (5) Review and finalize test and certification documentation forms provided by OC SAN so they are specific to each item of equipment and system installed, modified, or rewired under this Contract. The CONTRACTOR shall request forms from the ENGINEER. The CONTRACTOR shall meet with the ENGINEER to review all final forms and submit them for acceptance. - (6) Develop test and certification documentation forms specific to each equipment, instrument, and device that have not been provided by OC SAN that were installed, modified, or rewired under this Contract. The CONTRACTOR shall meet with the ENGINEER to review all final forms and submit them for acceptance. - (7) Develop test documentation forms specific to each item of equipment that have not been provided by OC SAN that were installed, modified, or rewired under this Contract. - (8) Update the Commissioning Dashboard in accordance with Specifications Section 01811, Commissioning Dashboard. - (9) Develop and utilize a record keeping system and tracking tools. - c. Develop and utilize pre-startup checklists. Schedule: - (1) Develop and update a detailed pre-commissioning and commissioning schedule and incorporate it into the Construction Schedule. - (2) Develop and update a weekly Three-Week Look-Ahead schedule during the pre-commissioning and commissioning phases. #### d. Manufacturer Services: - (1) Schedule and coordinate manufacturer's services required in accordance with Manufacturer's Field Services in this section and the individual equipment Specifications sections. - (2) Notify the ENGINEER when any manufacturer services are to be performed. - e. Pre-Commissioning and Commissioning: - (1) Provide technical oversight during the pre-commissioning and commissioning activities. - (2) Be responsible for preparing pre-commissioning and commissioning submittals. - (3) Provide all documentation that equipment, instrumentation and devices are ready for testing. - (4) Track NETA acceptance testing required in accordance with Specifications Section 16080, Electrical Testing. - (5) Coordinate pre-commissioning tests, pre-commissioning activities, and loop checks. - (6) Coordinate commissioning activities. - (7) Support OC SAN with troubleshooting during RAT if requested by the ENGINEER and coordinate any repairs. OC SAN will direct operations during RAT to protect public health, safety and water quality. (8) Provide all gate reports, per commissioning package, after the precommissioning phase and each phase of commissioning. The report shall include the collection of data and documentation during that portion of the Work as described in Article entitled "Gate Reports" herein. #### f. OC SAN Training: - (1) Formally request training facilities for the classroom portion of the operator and maintenance training thirty (30) days prior to use. - (2) Oversee and coordinate the activities and duties of the CONTRACTOR's Training Representative. #### g. Equipment Service Manuals: (1) Oversees the submittal process of the Equipment Service Manuals, which are required in accordance with Specifications Section 01783, Equipment Service Manuals. #### h. Meetings: - (1) Conduct monthly commissioning meetings from the date of ENGINEER's acceptance of the Commissioning Coordinator through the start of Unwitnessed
Loop Checks. The meeting shall cover the Commissioning Plan development, pre-commissioning progress and activities, and preparation of loop checks. The meeting shall be documented with meeting minutes. Draft meeting minutes shall be submitted to the ENGINEER within seven (7) days after the meeting for review and comment. Final meeting minutes shall be submitted within fourteen (14) days after the meeting. - (2) Conduct [bi-weekly] [weekly] commissioning meetings from the start of Unwitnessed Loop Checks through the completion of the Reliability Acceptance Test. The meeting shall cover the Three-Week Look-Ahead schedule and track actions and punch-list items. The meeting shall be documented with meeting minutes. Draft meeting minutes shall be submitted to the ENGINEER within seven (7) days after the meeting for review and comment. Final meeting minutes shall be submitted within fourteen (14) days after the meeting. - (3) Conduct daily kick-off meetings in the morning (discuss the activities and sequencing planned for the day) and debrief meetings at the end of the day (discuss progress, issues and concerns) when pre-commissioning witnessed loop checks and commissioning activities are being performed. These meetings shall be brief and last approximately fifteen (15) minutes. #### C. CONTRACTOR's Commissioning Team Leader 1. Qualifications a. Resumes of the Commissioning Team Leaders shall be submitted for acceptance. The Commissioning Team Leader shall be accepted by the ENGINEER during the acceptance process of the Commissioning Coordinator. The Commissioning Team Leader shall have experience on at least three projects performing equipment startup and commissioning activities. #### 2. Responsibilities: - a. Lead and direct the Commissioning Team in the field during the ORT and FAT procedures for their respective team and sign the completed procedure steps. - b. The Commissioning Coordinator may serve as a Commissioning Team Leader for one of the Commissioning Teams provided all Commissioning Coordinator duties are being successfully performed in a timely manner. #### D. ENGINEER - 1. Responsibilities - a. Inspect equipment and wiring and observe the following tests for compliance with the Contract Documents. - (1) Factory Demonstration Test Part 2 (no more than one FDT at a time) - (2) Witnessed Loop Checks. The CONTRACTOR shall base their bid on having no more than two witnessed loop check teams at a time when no commissioning activities are being performed or one witnessed loop check team when commissioning activities are being performed. - b. Complete Permission to Energize Electrical Equipment Forms and authorize the initial energization of electrical equipment. - c. Observe the following tests for compliance with the Contract Documents. The CONTRACTOR shall base their bid on having no more than **[one team] [two teams]** to perform any combination of commissioning activities (electrical equipment energization, pre-ORT, ORT, FAT and RAT) at a time. - (1) Electrical Equipment Energization - (2) Pre-ORT - (3) Operational Readiness Test - (4) Functional Acceptance Test - (5) Reliability Acceptance Test - (6) [Performance Acceptance Test] - d. Furnish and install process control software [unless specified in Section 17410, Programming by Contractor] and download the process control software starting with ORT. - e. Provide labor and services to inspect and support the integration of OC SAN-furnished process control software with the Project equipment, instrumentation, devices, and control system during all commissioning phases. - f. Provide operators for the RAT. - g. Provide classroom facilities for operator and maintenance training. - h. Review of all test data and results. #### 1.6 FACTORY DEMONSTRATION TEST (FDT) PROCEDURES - A. Develop and submit step-by-step written procedures for the systematic testing of pumps, process equipment, mechanical equipment, electrical equipment, and control panels at the factory where required in individual Specifications sections. The submittal shall include the following: - 1. The setup requirements for the test and the steps required to complete the test. - 2. A description of what is being verified at each individual step of the test with the associated passing criteria. - 3. A list of all test equipment to be used for the tests. - 4. When process testing of equipment is required, a diagram shall be provided showing the equipment, test setup arrangement, equipment and piping interconnections, and any special test equipment. - 5. Test schedule. - 6. The FDT checkout procedures shall be reviewed and approved by the respective equipment manufacturers and be acceptable to the ENGINEER. FDT procedures shall be accepted by the ENGINEER 30 days prior to FDT1. - B. FDT 1 Factory Demonstration Test Part 1: The purpose of this test is for the CONTRACTOR to inspect and witness the testing of the Contract equipment at the manufacture's facility in accordance with an accepted procedure. - C. FDT 2 Factory Demonstration Test Part 2: The purpose of this test is for the CONTRACTOR and ENGINEER to inspect and witness the testing of the Contract equipment at the manufacture's facility in accordance with an accepted procedure. #### 1.7 COMMISSIONING OVERVIEW AND PLANS - A. Provide a commissioning overview and a separate Commissioning Plan for each commissioning package. These items shall be submitted separately for review and acceptance by the ENGINEER. - B. Once the ENGINEER has accepted a Commissioning Plan, the Commissioning Coordinator shall reproduce the plans in sufficient number for the Commissioning Coordinator's purposes and provide two (2) hard copies of the plan in the field for the CONTRACTOR's commissioning team and the ENGINEER to use. One copy will be used by the field staff and one copy (master) will be used by OC SAN's programming staff. The plans shall be kept up to date on a regular basis. No Work, as described in this section, shall begin until the Commissioning Plan has been accepted by the ENGINEER. C. A Commissioning Overview submittal shall be provided and shall include the following: #### 1. Tab 1 - Staff - a. Organization chart of the Commissioning Team for conducting the precommissioning and commissioning activities. - b. Description of Commissioning Team members relevant experience on similar projects, their role on each of these projects, and a list of three (3) references with contact information (e-mail and phone numbers). - c. Roles and responsibilities of Commissioning Team members. - d. Email and cell phone numbers for the Commissioning Team members. The ENGINEER shall be informed of any change in commissioning staff or contact information through the duration of Pre-Commissioning and Commissioning. #### 2. <u>Tab 2:</u> List of commissioning packages - a. The CONTRACTOR shall develop a list of commissioning packages. The CONTRACTOR shall include redline P&IDs to better define which equipment is part of a commissioning package when a large system is constructed and commissioned in phases or when equipment cannot easily be defined by a system description (e.g., a sump pump system, supply or exhaust fan, or plant air system is being commissioned with a larger system). - D. A Commissioning Plan shall be provided for each commissioning package and shall include the following: #### 1. Tab 1: Calibration Forms a. Develop instrumentation calibration forms that include calculated calibration values and acceptable plus/minus calibration ranges in engineering units for each test point. #### 2. Tab 2: Tracking Reports a. Include tracking reports as specified in Part 1, Article entitled "Record Keeping System and Tracking Tools" with all information filled out, except for information under the tracking columns. Only tasks to be completed in the future shall be left blank. #### 3. Tab 3: Pre-Test Checklist a. Develop a checklist for all equipment in a commissioning package that must be verified prior to testing. The purpose of this checklist is to verify that all valves, breakers, motors, etc. are in their proper position (i.e., open, closed, energized, de-energized, etc.) to ensure a safe and efficient test. The CONTRACTOR shall submit a separate checklist for ORT and FAT testing for each commissioning package. Each instrument, device, and piece of equipment shall be referred to by its English description and by its tag number. #### 4. Tab 4: Testing Piping Plan - a. The Contractor shall identify all water used in each test, and how, where, and at what conditions it is supplied and discharged. Testing piping shall be provided as necessary to operate equipment at all test conditions. The CONTRACTOR shall develop all testing piping plans required to perform FAT. - (1) [The following is the supply point for water and the available flow conditions: | Supply Point of Connection/Drawing | Test
Procedure | Available
Supply Flow
(gpm) | Available
Pressure
(psig) | |------------------------------------|-------------------|-----------------------------------|---------------------------------| | | | | | (2) The following is the discharge point and the maximum discharge flow:] | Discharge Point of Connection/Drawing | Test Procedure | Maximum Discharge
Flow (gpm) | |---------------------------------------|----------------|---------------------------------| | | | | - b. For each testing pipe, the plan shall include the required flow criteria, sizing calculations, plan drawings, redlines of P&IDs, and all piping details required for testing. The plan shall also include what new and existing mechanical equipment will be manipulated during testing. - c. The testing piping system shall include the following key components: - (1) A flow metering instrument when flow is needed for measurement and control, and the controlling flow meter is bypassed by the testing piping. The flow metering instrument may be an orifice plate, magmeter, insertion magmeter, ultrasonic or
another device proposed by the CONTRACTOR and accepted by the ENGINEER. All instruments shall be factory or field calibrated. The full range accuracy of the flow metering device shall be plus or minus one (1) percent. - (2) A throttling valve that creates a back pressure on the pumps to replicate the full and reduced performance/capacity operating range of the equipment if required. - (3) Necessary piping connections and accessories such as air release valves, vacuum relief valves, pressure control valves, drains, and instrumentation connections. Accessories shall be shown on the testing piping plan and redlined P&IDs. - 5. Tab 5: Pre-ORT Procedures - a. Develop Pre-ORT testing checklist to verify valves, gates, motors and appurtenances are ready to test as described in the paragraph entitled "Commissioning Phase 2, Pre-ORT Activities" in Part 3 of this section. - b. Standard pre-check procedures for vendor packaged equipment. - 6. Tab 6: Packaged Equipment ORT and FAT Procedures: - a. Use the vendor's standard testing procedures for testing their packaged equipment during ORT and FAT. The test procedures shall demonstrate equipment performance, all operational requirements, all modes of operation (local and automatic) and all interlocks. The following information shall be provided with the vendor's ORT and FAT procedures: - (1) Control strategy - (2) Setpoint list - (3) Shutdown list - (4) Alarm list - b. Develop ORT and FAT procedures to supplement the vendor's standard testing procedures when the vendor's procedures do not cover the overall system operations and commissioning package interfaces, interlocks and shutdowns with other systems. - c. Develop ORT and FAT procedures for packaged equipment and systems when the manufacturer does not have a standard testing procedure. The ORT and FAT procedures shall conform to the ORT and FAT procedures described in the tabs below. The CONTRACTOR shall have the respective equipment manufacturer review and approve the procedure and provide a written letter of acceptance in this tab. - d. If there is no packaged equipment in this Project, provide a placeholder for this tab and indicate that it is "Not Applicable." - 7. Tab 7: ORT Procedures: - a. OC SAN has developed a select number of the ORT procedures for the Project in Attachment A. CONTRACTOR shall review and finalize these procedures based on the actual equipment and systems being provided. - b. Develop step-by-step procedures to systematically test every control circuit for all equipment, instruments, devices, and wiring installed or modified under this Contract where OC SAN has not provided a procedure. A procedure shall be submitted for each piece of equipment with a control or I/O circuit. The procedure shall test equipment in LOCAL, HAND, and REMOTE MANUAL modes of operation. CONTRACTOR shall match the format of the procedures provided by OC SAN, which includes a description of the action to be performed and anticipated result, the register number for the associated PLC input and output point to be verified, action to be verified with comments, and signatures for the CONTRACTOR and ENGINEER for each procedure step. Procedures shall use the appropriate testing method for instruments and devices, as specified in Part 3, Article entitled "Commissioning Phase 3, ORT Activities" of this section, to verify that the circuit is operating properly and connected to the correct device. The following is a typical list of equipment or systems that needs a procedure developed: - (1) HVAC systems - c. ORT procedures shall verify the following: - (1) I/O signals to/from the field device, motor starters or control panels, through all cabling, to the PLC and HMI and the application software properly operates. - (2) Proper installation, operation and adjustment of all devices, instrumentation, and equipment on a loop by loop and component by component basis. Functionality shall be checked from the primary element in the field through all cabling to the PLC and HMI. - (3) Proper operation of equipment controls, devices, and indicating lamps. - (4) All hardwired interlocks properly shutdown the equipment. - (5) All alarms are triggered at the HMI. - (6) All status signals are monitored at the HMI. - d. The electrical ORT procedures shall include the following: - (1) Steps to test and check the LOCAL mode of operation, verify all required switching scenarios and functions, and verify that precluded switching scenarios do not occur. - (2) Methodology for supplying temporary power (when required). - (3) Steps to coordinate administrative controls of Project electrical equipment that interfaces with existing OC SAN electrical equipment to ensure that inadvertent energization of existing OC SAN equipment does not occur. - e. Provide a list of all test equipment that will be used to perform each test. - 8. Tab 8: Pre-FAT Procedures - a. In REMOTE MANUAL, this procedure shall test the functionality of level instruments (verify operation from minimum to maximum level) and flow instruments with water, operation of gates with maximum water level upstream side, each water shutdown interlock (i.e., pump shuts down on high discharge pressure when discharge valve is throttled closed), and any other tests that require water to verify proper equipment and instrument operation prior to FAT. The shutdown interlocks are described in Commissioning Phase 3, FAT Activities in Part 3, properly performs the function and verify the shutdown setpoint is the correct setpoint to properly protect the equipment and system. - b. OC SAN has developed a select number of pre-FAT procedures for the Project in Attachment A. The CONTRACTOR shall review and finalize these procedures based on the actual equipment and systems being provided. c. The CONTRACTOR shall develop step-by-step procedures to systematically test the functionality of select equipment and instruments installed under this Contract with water where OC SAN has not provided a procedure. The procedures shall verify the equipment and instrument operation with water. The procedures shall describe the initiation of shutdowns and the expected results that are to be verified. A procedure shall be submitted for each equipment and instrument requiring a pre-FAT. The CONTRACTOR shall match the format of the procedures provided by OC SAN. ### 8. Tab: FAT Procedures - a. OC SAN has developed a select number of FAT procedures for the Project in Attachment A. CONTRACTOR shall review and finalize these procedures based on the actual equipment and systems being provided. - b. Develop step-by-step procedures to systematically test the functionality of all equipment and systems installed or modified under this Contract where OC SAN has not provided a procedure. The procedure shall test equipment in LOCAL AUTO and REMOTE AUTOMATIC modes of operation. The procedure shall test all equipment and systems in REMOTE AUTOMATIC and AUTO modes to verify that the equipment and systems operate as described in the control strategies of the Specifications sections. The procedures shall describe the initiation of shutdowns and the expected results that are to be verified and shall test all startup and shutdown conditions for each piece of equipment and the system or process train to test the complete program functionality. The procedure shall include all testing scenarios. A procedure shall be submitted for each equipment and system. A system FAT shall be provided for all equipment that function together with programming interlocks. The CONTRACTOR shall match the format of the procedures provided by OC SAN. The following is a typical list of equipment or systems that needs a procedure developed procedures the: - (1) HVAC systems - (2) Fire alarm systems - (3) Access control systems - (4) Public address system - (5) Closed circuit television system - (6) Telephone - (7) Elevators - (8) Cranes and hoists - c. Performance testing of each individual item of mechanical, electrical and instrumentation equipment shall be performed to duplicate the operating conditions described in the Contract Documents, as closely as possible. - d. System tests shall be designed to duplicate operating conditions of the system as described in the Contract Documents, as closely as possible. - e. Provide a list of all test equipment that will be used to perform each test. - f. The electrical FAT procedures shall include the following: - (1) Steps to test the REMOTE (automatic and PLC controls) mode of operation, verify all required switching scenarios and functions, verify that precluded switching scenarios do not occur, and proper functionality of all interlocks. - (2) Methodology for supplying temporary power (when required). - (3) Steps to coordinate administrative controls of Project electrical equipment that interfaces with existing OC SAN electrical equipment to ensure that inadvertent energization of existing OC SAN equipment does not occur. - g. The control strategies describe the general operation, interlocking and sequencing of a system, but do not describe every shutdown and logical sequence in exact detail. For procedures that reflect OC SAN programming, the CONTRACTOR shall allow the ENGINEER to revise the FAT procedures based on the final programming to incorporate equipment interlocks, shutdowns, and operating sequences. Provides that reflect the CONTRACTOR's programming shall be revised to reflect the final program that will be tested during FAT. These revisions may include formal revisions to the procedure or ad-hoc revisions in the field as required. ## 9. Tab 10: RAT Procedures - a. OC SAN will develop and execute the RAT procedures for the Project. - b. Incorporate these procedures into the Commissioning Plan for each commissioning package. During the RAT procedures, the equipment and systems will be operated under various scenarios of normal operating conditions. Where possible the system will be tested to verify dry and wet weather
design operating conditions and confirm system capacity. Failures will be simulated to test the fail-over logic, equipment shutdown sequencing, and equipment startup sequencing. - c. CONTRACTOR does not need to be present unless required in an equipment Specifications section, but shall be available to troubleshoot and repair when requested. ### 10. Tab 11: PAT Procedures - a. OC SAN will develop and execute the PAT procedures for the Project. - b. Incorporate these procedures into the Commissioning Plan for each commissioning package. During the PAT procedures, the equipment and systems will be operated under different operating conditions to verify dry and wet weather design operating conditions and confirm system capacity. - c. CONTRACTOR does not need to be present unless required in an equipment Specifications section, but shall be available to troubleshoot and repair when requested. ## 11. <u>Tab 12:</u> Drawings - a. Include the following drawings associated with the commissioning package. Markup the drawings showing the limits of Work associated with the commissioning package. - (1) Single line diagrams - (2) P&IDs - (3) Control panel shop drawings - (4) Control schematics from equipment shop drawings - (5) Accepted loop drawings ### 1.8 SCHEDULE - A. The Commissioning Coordinator shall develop a commissioning schedule for precommissioning and commissioning activities for all equipment and systems. The schedule shall include OC SAN personnel training. The pre-commissioning schedule shall be organized by remote input/output (RIO) panel and equipment. The commissioning schedule shall be organized by commissioning package and shall show the chronological order of all commissioning activities by test. The commissioning schedule shall incorporate the following restrictions in addition to the requirements identified in Tables 1a and 1b: - 1. Witnessed loop checks shall not be performed for an RIO panel until all field and panel wire terminations associated with that RIO panel have been completed. - 2. The electrical equipment energization process shall be complete and written authorization to energize shall be provided by the ENGINEER prior to the electrical equipment being allowed to be used for the associated equipment ORTs. - 3. A commissioning package Pre-ORT shall be successfully performed before moving to ORT. - 4. ORT procedures shall not be performed until: - a. All witnessed loop checks have been successfully performed for all panels associated with the commissioning package ORT(s) - b. Required electrical distribution equipment is energized - c. A Pre-ORT has been successfully performed for the commissioning package - d. All pre-ORT punch list items have been signed off by the ENGINEER - e. The commissioning package pre-commissioning gate report has been accepted by the ENGINEER. - 5. FAT shall not be performed until all ORT procedures and requirements for the commissioning package and pre-FAT punch list items have been signed off by the ENGINEER. - 6. RAT shall not be performed until all FAT procedures and requirements for the commissioning package and pre-RAT punch list items have been signed off by the ENGINEER. - B. CONTRACTOR's Baseline Construction Schedule as specified in Division 01 of the Specifications shall incorporate the commissioning schedule. - C. The commissioning schedule shall show the start date, duration and completion date of each pre-commissioning and commissioning activity. The schedule shall include FDT, COPI, NETA testing, Unwitnessed and Witnessed Loop Checks, electrical equipment energization, Pre-ORT, ORT, FAT, RAT, and COPO, as a minimum. - D. The commissioning schedule shall include all operations and maintenance training activities. - E. The schedule shall include pre-commissioning and commissioning submittal dates and OC SAN review and acceptance time for each submittal prior to moving to the next phase of pre-commissioning and commissioning. - F. Within sixty (60) days of the ENGINEER's acceptance of the Commissioning Overview submittal and all Commissioning Plans and ninety (90) days prior to any pre-commissioning and commissioning activity, the CONTRACTOR shall integrate the schedule into the Construction Schedule and submit a Construction Schedule revision for review by the ENGINEER as specified in Specifications Section 01300, Contractors Construction Schedule and Reports. - G. The commissioning schedule shall be updated monthly in accordance with Specifications Section 01300, Contractors Construction Schedule and Reports, indicating schedule changes and which activities have been successfully completed. - H. Three-Week Look-Ahead Schedule - 1. Develop a three-week look-ahead schedule, that is updated on a weekly basis, starting three (3) weeks before the first unwitnessed loop check is performed through the completion of the last RAT. ### 1.9 RECORD KEEPING SYSTEM AND TRACKING TOOLS - A. The Commissioning Coordinator shall develop and update a record keeping system to document compliance with the requirements of this Specifications section and the other Specifications sections for pre-commissioning and commissioning activities. The recording keeping system and tracking tools shall use different colors or separate columns to track acceptance by the CONTRACTOR and acceptance by the ENGINEER. The CONTRACTOR shall make the recording keeping system and tracking tools available to the ENGINEER at all times and shall provide the ENGINEER weekly updates of all record keeping systems and tracking tools from the point when information is first logged until all activities are complete. The recording keeping system shall be submitted for ENGINEER'S acceptance prior to their use. - B. Conduct a workshop with the ENGINEER to review their approach to the record keeping system and tracking tools prior to implementation. The workshop shall also discuss electrical equipment energization and permission to energize tracking as part of the tracking spreadsheets and the Commissioning Dashboard. - C. The following tracking spreadsheets shall be developed as a minimum for the entire project. The tracking spreadsheets shall include a commissioning package column for sorting and filtering. The spreadsheets shall be submitted with the monthly progress report until the first pre-commissioning Gate report is submitted. After the pre-commissioning Gate report is submitted, commissioning package tracking spreadsheets shall be submitted on a bi-weekly basis. - 1. Lock-out and Tag-out Procedures: Tracks the lock-out and tag-out procedure description, acceptance date, commissioning package, and comments. - 2. 480V and Greater Conductor Testing/Torquing/Energization: Tracks the cable tag, commissioning package, equipment fed description, equipment fed tag, name of electrical equipment the cable is being fed from (switchgear, MCC, panelboard, etc.), source switchgear/MCC cubicle tag or panel circuit number, continuity check for each conductor, insulation resistance value for each conductor, source end information (performed by (CONTRACTOR), completion date, checked by (ENGINEER), torque value for each conductor and comments), and load end information (performed by (CONTRACTOR), completion date, checked by (ENGINEER), torque value for each conductor and comments). Include a NETA testing complete column for medium-voltage cables and cable bus. Also track the ENGINEER's permission to energize date for each circuit. - 3. Instrumentation, Control and Alarm Circuit Conductor Testing: Tracks the cable tag, commissioning package, fed from description and tag, fed to description and tag, continuity check for each conductor, and insulation resistance value for each conductor. - 4. Wire Tag/Loop Check: Tracks the loop drawing number, loop drawing title, RIO panel number, commissioning package, Unwitnessed Loop Check information (check by and check date), Wire Tag Check information (check by, check date and comments (ENGINEER)), and Witnessed Loop Check information (check by, check date and comments (CONTRACTOR and ENGINEER)). - 5. Instrumentation Calibration: Tracks the instrumentation tag, description, calibration method, completion of calibrations, and commissioning package. - 6. Manufacturer Services (tracks the following): - a. Completion of training plans, COPI, COPO, training of OC SAN personnel, and commissioning package. - b. Submittal of a letter stating that the proposed manufacturers' personnel are qualified, trained and have experience performing the required services for all equipment, instruments and devices that require manufacturer services. - 7. Electronic Configuration File: Tracks the equipment tag, description, commissioning package, and the submittal date of electronic native files with software, and PDF printouts of configuration settings highlighting changes to default settings. PDF shall be searchable. - 8. Individual Equipment Service Manuals: Track the Specifications section, equipment description, equipment loop tag numbers (instrument, mechanical, electrical, etc.), commissioning package, acceptance date, and comments. - 9. Post-Energization Electrical Testing: Tracks the Specifications section and article, test description, commissioning package, date when test is required, completion date and comments. - D. The Commissioning Coordinator shall be responsible for setting up and updating a Commissioning Dashboard to track the completion of all pre-commissioning and commissioning activities. This dashboard shall be used to verify all items are complete prior to moving to the next phase. The CONTRACTOR may use the Commissioning Dashboard provided by OC SAN as defined in Section 01811, Commissioning Dashboard, or may use its own tracking tool. If the CONTRACTOR uses its own tool, it shall be submitted for ENGINEER's acceptance prior to its use. #### 1.10 GATE REPORTS A. Submit Gate Reports for each commissioning package to the ENGINEER for acceptance to continue through the
Commissioning process. Gate Reports are a collection of all test reports, test data, certificates and forms for all equipment, instruments and systems, that are produced during the pre-commissioning and commissioning phases for each commissioning package. The Commissioning Coordinator is responsible for producing these reports. ## B. Pre-commissioning Gate Report - 1. The Pre-Commissioning Gate Report shall include the following: - a. <u>Tab 1 Completion Statement:</u> A formal statement that the CONTRACTOR has completed the following requirements and is ready to move to the next phase of commissioning: - (1) All requirements and punch list items associated with pre-commissioning. - (2) RFIs and responses up to date and all approved changes complete associated with the Work - (3) Tags for equipment and instrument are properly installed - (4) All electrical equipment, devices, instruments, enclosures, pull boxes, field control panels and control panels and secure all panel and wire covers associated with the loop checks have been inspected and cleaned. - (5) Electrical rooms are clean and all construction work in the electrical room is complete (Wiring may be remaining for equipment not being energized). ### b. Tab 2 – Pre-commissioning Activities: - (1) An index of pre-commissioning submittals indicated in Table 1a and specified in other Specifications sections that are required to be complete during pre-commissioning, with the associated accepted submittal number. At a minimum, the index shall include the following list with a "not applicable (N/A)" for any submittal that is not required for the associated commissioning package: - (a) CONTRACTOR's lock-out tag-out and safety procedures - (b) Factory Demonstration Test procedures - (c) Factory performance tests - (d) Factory Demonstration Test Part 1 Report (unwitnessed) - (e) Factory Demonstration Test Part 2 Report (Witnessed) - (f) Electrical system analyses and measurements information (Section 16431) - (g) Mechanical alignment reports - (h) Metallurgical test reports - (i) Pressure test reports - (j) Electrical equipment tests (Section 16080 and Div. 16) - (k) Motors tested by CONTRACTOR (Section 16080) - Conductor test reports - (m) Conductor torque logs - (n) EID Data (Manufacturer and Model Number) - (o) Approval of Section 17410, Programming by Contractor, Step 4 Bench Test - (p) Operating permits - (g) Operator & Maintenance Training Plan - (r) All draft individual equipment service manuals (Identify submittals in Individual Equipment Service Manuals Tracking Report) - (2) This tab shall also include the following completed tracking reports as specified in Part 1, Article entitled "Record Keeping System and Tracking Tools" of this section. Include a printout of the Commissioning Dashboard: - (a) CONTRACTOR's Lock-Out and Tag-Out Procedures Tracking Report - (b) 480V and Greater Conductor Testing/Torquing/Energization Tracking Report - (c) Instrumentation, Control and Alarm Circuit Conductor Tracking Report - (d) Manufacturer Services Tracking Report showing completion of training plans - (e) Individual Equipment Service Manuals Tracking Report - c. <u>Tab 3 Instrumentation Calibrations</u>: The completed Instrumentation Calibration Tracking Report as specified in Part 1, Article entitled "Record Keeping System and Tracking Tools" of this section. All instrument calibrations shall be complete except instruments on packaged equipment. Completed and signed instrument calibration forms and factory calibration certificates. Documentation shall be grouped for each instrument with the commissioning package Instrumentation Checklist, sorted in ascending order of the loop number (15L-101, 15L-102, 15M-100...), showing that all documentation has been completed. - d. <u>Tab 4 Configuration Files:</u> A PDF printout of the configuration files highlighting all changes from the standard default configuration, including any jumper or internal switch settings, for every device, instrument or piece of equipment (i.e., valve actuators, gate actuators, analyzers, level instruments, pressure transmitters, indicators, VFDs, soft starters, etc.) with user defined settings. PDF shall be searchable. Electronic configuration files in their native format with the associated software to open, view and modify the native file shall also be provided. The Electronic Configuration File Tracking Report as specified in Part 1, Article entitled "Record Keeping System and Tracking Tools" of this section showing that all configuration files have been provided. - e. <u>Tab 5 COPI:</u> All manufacturer certificates of proper installation. The Manufacturer Services Tracking Report as specified in Part 1, Article entitled "Record Keeping System and Tracking Tools" of this section shall be provided showing that all COPIs have been performed. - f. <u>Tab 6 Wire Tag/Witnessed Loop Check:</u> The completed Wire Tag/Loop Check Tracking Report, as specified in Part 1, Article entitled "Record Keeping System and Tracking Tools" of this section, with CONTRACTOR and ENGINEER initials on the tracking report and highlighted and signed off loop drawings. - g. Tab 7 Redlined Drawings: Up to date redlined drawings: - (1) Redlined single line diagrams - (2) Redlined P&ID's. - (3) Redlined loop drawings signed by the ENGINEER. - (4) Redlined schematics / control diagrams - (5) Redlined control panel drawings - (6) Redlined wiring drawings - C. Commissioning Phase 1 Gate Report, Electrical Equipment Energization - 1. At a minimum, the Commissioning Phase 1 Gate Report shall include the following: - a. <u>Tab 1 Completion Statement:</u> A formal statement that the CONTRACTOR has completed all requirements and punch list items associated with this commissioning phase and is ready to move to the next phase of commissioning. - b. <u>Tab 2 ORT:</u> Signed and completed ORT procedures. - c. <u>Tab 3 FAT:</u> Signed and completed FAT procedures. - d. <u>Tab 4 COPO:</u> All manufacturer certificates of proper operation, when required for this phase. The Manufacturer Services Tracking Report as specified in Part 1, Article entitled "Record Keeping System and Tracking Tools" of this section shall be provided showing that all electrical COPOs have been provided. - e. <u>Tab 5 Configuration Files:</u> A PDF printout of the configuration file highlighting all changes from the standard default configuration, including any jumper or internal switch settings, for every device, instrument or piece of equipment (i.e., automatic transfer switches, protective relays, battery chargers, power monitors, etc.) with user defined settings. PDF shall be searchable. Electronic configuration files in their native format with the associated software to open, view and modify the native file shall also be provided. The Electronic Configuration File Tracking Report as specified in Part 1, Article entitled "Record Keeping System and Tracking Tools" of this section showing any revised or new configuration files that have been provided. - f. <u>Tab 6 Permission to Energize:</u> Completed permission to energize equipment forms for all electrically powered equipment and signed and completed motor preenergization forms for all motors above 3 horsepower. This form shall be signed by the CONTRACTOR and the ENGINEER prior to equipment energization indicating that all pre-energization activities are completed. - g. <u>Tab 7 Post-Energization Electrical Tests:</u> Completed and signed test reports. - h. Tab 8 Redlined Drawings: Up to date redlined drawings: - (1) Redlined single line diagrams - (2) Redlined P&ID's - (3) Redlined loop drawings signed by the ENGINEER - (4) Redlined schematics and elementary diagrams - (5) Redlined control panel drawings - (6) Redlined wiring drawings - D. Commissioning Phase 2 Gate Report, Pre-ORT - 1. At a minimum, the Commissioning Phase 2 Gate Report shall include the following: - a. <u>Tab 1 Completion Statement:</u> A formal statement that the CONTRACTOR has completed all requirements and punch list items associated with this commissioning phase and is ready to move to the next phase of commissioning. - b. $\underline{\text{Tab 2}} \underline{\text{Pre-ORT:}}$ Pre-ORT activities checklist documenting activities performed with their results. - c. Tab 3 Vibration Tests: Mechanical equipment vibration test results. - d. Tab 4 Motor Tests: Uncoupled motor test results. - e. <u>Tab 5 Packed Equipment Pre-Check List:</u> Manufacturer pre-check test results for packaged equipment (if applicable). - f. <u>Tab 6 Packaged Equipment Instrumentation Calibration:</u> Completed and signed instrument calibration forms for vendor instruments (if applicable). - E. Commissioning Phase 3 Gate Report, ORT and FAT - 1. At a minimum, the Commissioning Phase 3 Gate Report shall include the following: - a. <u>Tab 1 Completion Statement:</u> A formal statement that the CONTRACTOR has completed the following requirements and is ready to move to the next phase of commissioning: - (1) All requirements and punch list items associated with pre-commissioning. - (2) EID data (serial no., purchase price, startup date, project phase, and misc. info) (include reference to EID submittal number). - b. <u>Tab 2 ORT:</u> Signed and completed ORT procedures. - c. <u>Tab 3 Pre-FAT and FATFAT:</u> Signed and completed Pre-FAT and FAT procedures. - d. Tab 4 Field Performance Tests: Field performance test results. - e. <u>Tab 5 Operator Training:</u> The Manufacturer Services Tracking Report as specified in Part 1, Article entitled "Record Keeping System and Tracking Tools" of this section shall be provided showing that all operator training has been provided. - f. <u>Tab 6 Configuration Files:</u> Any revisions to PDF printouts of configuration files highlighting all changes from the standard default configuration and revisions to electronic configuration files in their native format as required in the Commissioning Phase 1 Gate Report. Include the
Electronic Configuration File Tracking Report as specified in Part 1, Article entitled "Record Keeping System and Tracking Tools" of this section showing which setting information has been revised. - g. Tab 7 Redlined Drawings: Up to date redlined drawings: - (1) Redlined single line diagrams - (2) Redlined P&ID's - (3) Redlined loop drawings signed by the ENGINEER - (4) Redlined schematics and elementary diagrams - (5) Redlined control panel drawings - (6) Redlined wiring drawings - F. Commissioning Phase 4 Gate Report, RAT - 1. At a minimum, the Commissioning Phase 4 Gate Report shall include the following: - a. <u>Tab 1 Completion Statement:</u> A formal statement that the CONTRACTOR has completed all requirements and punch list items associated with the current commissioning phase and is ready for Substantial Completion. - b. Tab 2 RAT: Signed and completed RAT procedures. - c. <u>Tab 3 COPO:</u> All non-electrical manufacturer certificates of proper operation. The Manufacturer Services Tracking Report as specified in Part 1, Article entitled "Record Keeping System and Tracking Tools" of this section shall be provided showing that all COPOs have been provided. ### PART 2 - PRODUCTS (NOT USED) #### **PART 3 - EXECUTION** - 3.1 GENERAL - A. Pre-commissioning is made up of all the activities that shall be completed before the CONTRACTOR is permitted to begin Commissioning. - B. Commissioning is composed of the following four (4) phases: - 1. Phase 1: This phase performs electrical commissioning and energization. - 2. Phase 2: This phase performs Pre-ORT and readiness tests on equipment to make sure that they are properly installed and configured and are ready to be commissioned. - 3. Phase 3: This phase performs the ORT and FAT. - 4. Phase 4: This phase performs the RAT and PAT. - C. Tables 1a and 1b illustrate many of the tasks to be completed in each phase. - D. Testing and Tie-in Coordination - 1. Notify the ENGINEER in writing not less than fourteen (14) days in advance of the planned start date of equipment testing and tie ins to coordinate with plant operations and maintenance staff. - E. Field Testing Information - 1. Preliminary copies of testing data in field report form shall be made available to the ENGINEER within two (2) days after completion of each test. This information shall remain available to the ENGINEER for the duration of the Project. - F. Materials and Equipment - 1. Provide all testing and recording devices required for specified tests. Test equipment shall be calibrated annually. - 2. Provide all lubricating oil, hydraulic oil, grease, packing, and insulating and lubricating fluids and filters required to clean, blow out, flush, and initially charge equipment and systems. - G. The Commissioning Coordinator shall maintain one (1) set of the following documentation in the field for the ENGINEER: - 1. All Drawings, Specifications, addenda and Change Orders; - 2. Updated Commissioning Plans for each commissioning package; and - 3. Copy of drawings and hardware submittals for equipment being tested. - 4. Redlined or updated loops, P&ID's, instrument configuration parameters, calibration sheets, single line diagrams, control panel drawings, schematics, elementary diagrams, and interconnect diagrams. ### H. Daily Schedule for Testing - 1. The Commissioning Coordinator shall begin each day of witnessed testing by meeting with the ENGINEER. - 2. The meeting purpose is to review the test schedule, the test results from the previous day, and where applicable, to coordinate the testing schedule with Plant Operations. - 3. Commissioning Coordinator may need to schedule some testing outside normal working hours because of plant operational requirements. - 4. The Commissioning Coordinator shall be prepared to rearrange portions of the commissioning schedule under short notice due to unanticipated plant conditions, equipment failure or unusually high sewage flows caused by wet weather. ### I. Retesting 1. When testing or operation of the equipment demonstrates that the equipment does not meet the specified requirements, CONTRACTOR shall repeat or perform all additional tests as necessary and required by the ENGINEER. ## J. Continuous Operation 1. After successful Reliability Acceptance Test of a specific equipment or portion of a system, OC SAN may elect to operate the specific equipment or portion of a system for continuous operation. Such operation will not interfere with the testing of other equipment and systems that may still be underway and shall not preclude the need to start up the portion operated in combination with the rest of the facility when all testing is completed. # TABLE 1a | TABLE 18 | | | |--|--|--| | PRE-COMMISSIONING (Construction) | | | | Equipment Submittal Process Complete | | | | Commissioning Plan | | | | CONTRACTOR's Lock-out Tag-out and Safety Procedures | | | | Factory Demonstration Test Procedures | | | | Factory Performance Tests | | | | Factory Demonstration Test - Part 1 (Unwitnessed) (Divisions 11, 15, 16 and 17) | | | | Factory Demonstration Test - Part 2 (Witnessed) (Divisions 11, 15, 16 and 17) | | | | All Factory Demonstration Test (FDT) Reports (Divisions 11, 15, 16 and 17) | | | | RFIs and Responses up to Date and all Approved Changes Complete Associated with the Work | | | | Electrical System Analyses and Measurements Information (Section 16431) | | | | Seismic Calculations | | | | Mechanical Alignment Reports | | | | Metallurgical Test Reports | | | | Pressure Test Reports | | | | Electrical Equipment Tests (Section 16080 and Div. 16) | | | | Motors Tested by CONTRACTOR (Section 16080) | | | | Conductor Test Reports | | | | Conductor Torque Logs | | | | Equipment and Instrument Tags Are Properly Installed | | | | EID Data (Manufacturer and Model Number) (received 90 days prior to Phase 1) | | | | [Approval of Section 17410, Programming by Contractor, Step 4 – Bench Test] | | | | All Operating Permits | | | | Operator & Maintenance Training Plan | | | | All Draft Individual Equipment Service Manuals (received 90 days prior to Phase 1) | | | | Inspect and clean all electrical equipment, devices, instruments, enclosures, pull boxes, field control panels and control panels and secure all panel and wire covers associated with the loop checks | | | | Electrical Rooms are Clean and all Construction Work in the Electrical Room is Complete (Wiring may be remaining for equipment not being energized) | | | | Unwitnessed Loop Check | | | | *Indexed Summary of the Completed Pre-Commissioning Requirements (tests, certificates and reports) | | | | *All Instrument Calibration Reports (factory and field) (Section 17010 and Div. 17) | | | | *All Electronic Devices Configuration Files in PDF (default value changes highlighted) and Native Formats | | | | *All Manufacturer Certificates of Proper Installation (COPI) | | | | *Wire Termination/Tag Check and Witnessed Loop Check | | | | *All Redline As-Built Drawings for the Commissioning Package (as required in the Gate Report) | | | | Pre-commissioning Gate Report | | | | Obtain ENGINEER's authorization to Proceed | | | | * Required for the Gate Report | | | ^{*} Required for the Gate Report # **TABLE 1b** | IABLE 10 | | | |---|--|--| | COMMISSIONING | | | | PHASE 1 – ELECTRICAL EQUIPMENT ENERGIZATION | | | | *HVAC for Electrical Equipment is Commissioned and Operational (HVAC shall be commissioned and initially operated using temporary power its associated electrical distribution equipment is commissioned and energized) | | | | *Permission to Energize Electrical Equipment | | | | *Electrical Operational Readiness Test (ORT) | | | | *Electrical Functional Acceptance Test (FAT) | | | | *Post-Energization Electrical Testing (Section 16080 and Div. 16) | | | | *All Manufacturer Certificates of Proper Operation (COPO) | | | | *All Electronic Devices Configuration Printout in PDF Format (highlight changes to default values) | | | | *All Redline As-Built Drawings for the Commissioning Package (as required in the Gate Report) | | | | Commissioning – Phase 1 Gate Report | | | | Obtain ENGINEER's authorization to Proceed | | | | PHASE 2 – PRE-ORT | | | | *Pre-ORT Activities and Tests | | | | *Equipment Vibration Tests | | | | *Motor Uncoupled Run Test (Section 16080) | | | | *All Instrument Calibration Reports (factory and field) (Packaged Equipment) | | | | *Manufacturer Pre-Checks for Packaged Equipment | | | | Commissioning – Phase 2 Gate Report | | | | Obtain ENGINEER's authorization to Proceed | | | | PHASE 3 – ORT AND FAT | | | | *Operational Readiness Test - (ORT) | | | | *Pre-Function Acceptance Testing (Pre-FAT) | | | | *Functional Acceptance Test (FAT) | | | | *Field Performance Tests | | | | *Operator Training received 30 days prior to Phase 4 | | | | *Revised Device Settings and Configuration Files | | | | *All Redline As-Built Drawings for the Commissioning Package (as required in the Gate Report) | | | | EID Data (Serial No., Purchase Price, Startup Date, Project Phase, and Misc. Info) | | | | Commissioning – Phase 3 Gate Report | | | | Obtain ENGINEER's authorization to Proceed | | | | PHASE 4 – RAT | | | | *Reliability Acceptance Test (RAT) | | | | *All Manufacturer Certificates of Proper Operation (COPO) | | | | Commissioning – Phase 4 Gate Report | | | | Substantial Completion | | | | Performance Acceptance Test (PAT) | | | | Final Equipment Service Manuals | | | | Final Punch List | | | | Final As-Built Drawings | | | | Final Completion | | | ^{*} Required for the Gate Report ### 3.2 MANUFACTURER'S FIELD SERVICES
A. It is the CONTRACTOR's responsibility to provide the services of the appropriate manufacturer's personnel during equipment installation, facilities testing, precommissioning, commissioning and training of OC SAN personnel. Where manufacturer's services are specified in this section and other Specifications sections, the CONTRACTOR shall furnish authorized manufacturer personnel who are factory-trained, knowledgeable, and experienced in the technical aspects of their products and systems supplied on the project and qualified to provide these services. ### B. Manufacturer Certifications - 1. After installation and before equipment energization, each manufacturer's personnel shall prepare a written Certificate of Proper Installation (COPI), certifying that the equipment specified in Divisions 8, 10, 11, 13, 14, 15, 16 and 17 is properly installed and lubricated, has been properly maintained by the CONTRACTOR, is in accurate alignment, and is free from any undue stress imposed by connecting piping or anchor bolts in accordance with the manufacturer's installation instructions. - 2. During Phase 4 of Commissioning, each manufacturer's personnel shall prepare a written Certificate of Proper Operation (COPO), certifying that the equipment specified in Divisions 8, 10, 11, 13, 14, 15, 16 and 17 is properly lubricated; has been properly maintained by the CONTRACTOR; is in accurate alignment; is free from any undue stress imposed by connecting piping or anchor bolts; and has been operated under all design conditions and meets the performance criteria in accordance with the requirements in the Specifications section and the manufacturer's operating requirements. Electrical COPOs for switchgear, automatic transfer switches, battery chargers, generators, panelboards, transformers, and uninterruptible power supplies shall be submitted after the electrical FAT. Electrical COPOs for motor control centers, motor starters, and variable frequency drives and all system, equipment, instruments, and device COPOs shall be submitted after RAT. - C. Submit a letter from the manufacturer stating that the proposed manufacturers' representatives who will perform these services is qualified, trained and experienced in performing the required services. ### D. Scheduling of Manufacturer's Field Services - 1. The scheduling of all visits to the site by the manufacturer's field services personnel shall be determined by the CONTRACTOR. The CONTRACTOR shall notify the ENGINEER in advance of all visits, so the ENGINEER can be available to observe the activities and coordinate with OC SAN Operation staff if required. - 2. Manufacturers' personnel shall resolve assembly problems associated with their products and equipment. - 3. During the testing, the manufacturer's personnel shall assist, as applicable, with performing equipment and device adjustments and calibrations. ### 3.3 PRE-COMMISSIONING ACTIVITIES A. Pre-commissioning is made up of all the activities that shall be completed before the CONTRACTOR is permitted to begin Commissioning. Table 1a illustrates many of the tasks. - B. The primary pre-commissioning activities consist of construction, factory testing, documentation, component testing, calibration, stand-alone equipment testing, electrical testing, conductor torquing, pipe pressure testing, unwitnessed loop checks, wire tag checks and witnessed loop checks associated with a commissioning package. The intent is to test isolated equipment and components. - C. In addition to the items identified in Table 1a, the following activities shall be completed during pre-commissioning: - 1. FDT 1 Factory Demonstration Test Part 1 Refer to section 17405 for more information on control panel FDTs. - 2. FDT 2 Factory Demonstration Test Part 2 Refer to section 17405 for more information on control panel FDTs. - 3. Instrument Calibration: CONTRACTOR shall calibrate non-factory-calibrated instruments and verify calibration of factory calibrated instruments in the presence of the ENGINEER. The CONTRACTOR shall use only qualified people trained and familiar with the calibration testing equipment and instruments being calibrated. The CONTRACTOR shall have available at the testing location the individual instrument cut sheets with manufacturer tolerances, factory calibration certificates (where available), and ISA data sheets for the ENGINEER. The CONTRACTOR shall use the pre-filled-out instrumentation calibration forms developed in the Commissioning Plan at the time of testing. Once complete, the ENGINEER will sign the calibration form. This signature does not imply ENGINEER acceptance, rather it indicates that the ENGINEER has witnessed the activity. Instrument calibration is still subject to the ENGINEER's acceptance during the review of Pre-Commissioning Gate Report. All instruments shall have been calibrated within a year prior to starting RAT. Testing shall be done as follows: ## a. Analog Instruments: - (1) A five-point calibration check (unless otherwise specified in the individual instrument Specifications sections) shall be performed and results shall be recorded on individual calibration sheets with three (3) significant digits. All testing shall be done with a calibrated test instrument. Each hardwired analog signal shall be tested to verify proper performance within specified tolerances. Specified accuracy tolerances for each analog signal is defined as the root-mean-square-summation of individual component accuracy requirements. Individual component accuracy requirements shall be based on the more stringent value between the tolerance specified in the Contract Documents and the published manufacturer specifications. - (a) Factory wet calibrated magnetic flow instruments do not require field calibration. Verification of proper operation shall be verified during FAT. - b. For discrete instruments, a calibration check shall be performed with a calibrated test instrument. The 'set' and 'reset' values shall be recorded as well as the dead band repeated through three (3) cycles. - 4. Inspect and clean all electrical equipment, devices, instruments, enclosures, pull boxes, field control panels and control panels associated with the loop checks, so they are free of dirt, debris, and foreign materials and verify all wireway covers and panel doors are properly installed and secure. - 5. Industrial Control System (ICS) Network: - a. CONTRACTOR shall not utilize the ICS network to perform loop checks. Computer and non-Project equipment connections to the ICS network are only allowed by OC SAN. - b. Complete the installation of all equipment, fiber optics, and cabling associated with the ICS network, including fiber optic and cabling to the RIO panels. The CONTRACTOR shall complete the testing of all fiber and copper cabling, submit test reports, and obtain the ENGINEER's acceptance. All Work within the ICS network rooms shall be complete where the ICS network equipment is installed in perforated enclosures. The HVAC system shall be complete and operational. Temporary power or permanent power shall be provided for the ICS network and control system equipment for configuration and testing. - c. Once all ICS network activities are complete, the CONTRACTOR shall notify the ENGINEER and shall provide OC SAN a minimum of [three (3)] [six (6)] [twelve (12)] weeks to perform the ICS network configuration and testing. - d. After the ICS network configuration and testing are complete, the ENGINEER will notify the CONTRACTOR in writing. - e. CONTRACTOR shall not begin commissioning for a commissioning package until the ICS network associated with the commissioning package is complete. The CONTRACTOR shall coordinate the required level of completion and connection of the ICS network with the ENGINEER. Only control system equipment that is ready for commissioning will be connected to the ICS network. - f. CONTRACTOR may request to have OC SAN perform the ICS network configuration and testing during Pre-ORT to utilize permanent power for the ICS network and control system equipment, provided OC SAN is given the required time to configure and test the ICS network and the control system equipment required to perform the ORT and FAT procedures for electrical equipment energization is provided with temporary power until permanent power is available. - 6. Unwitnessed Loop Check: - a. CONTRACTOR shall use accepted loop drawings to perform unwitnessed loop checks. - b. Unwitnessed loop checks shall not begin until the following Work is complete for the associated commissioning package: - (1) All equipment, instrumentation, and accessories are properly labeled and installed. - (2) All instruments are calibrated. - (3) All field and panel wiring associated with a commissioning package is complete, including all wiring to the associated RIO panels. - c. Perform an unwitnessed loop check, testing the continuity of all control and signal circuits shown on the accepted loop drawings for the RIO panel, including all associated motor starter, equipment, control panel, and field wiring. The loop check shall confirm and document the complete loop wiring, including I/O to/from PLC register (excluding the application software) is ready for operation. The CONTRACTOR shall use the PLC programming software to check all inputs and outputs to and from the temporary PLC at the RIO. - d. Highlight each successfully tested conductor using a "yellow" highlighter. Once the loop check is complete for each loop drawing, the CONTRACTOR shall initial the loop drawing indicating the unwitnessed loop check, wire terminations and tags are correct and shall sign off the unwitnessed verification columns in the Wire Tag/Loop Check Tracking Spreadsheet. - e. OC SAN will provide a maximum of two (2) temporary PLCs for the Project. The CONTRACTOR shall provide OC SAN one (1) day to set up and configure a temporary PLC at each location it is provided. - f. All redline changes to the loop drawings
identified during the unwitnessed loop check shall be documented. The field loop drawings shall be field reviewed and accepted by the ENGINEERENGINEER's prior to performing the associated wire termination/tag check and witnessed loop check. - g. Signals shall be tested per signal type as described in Tables 2a though 2g. If one of these tables does not apply to a circuit, the CONTRACTOR shall request an acceptable testing method from the ENGINEER. Loop checks shall be performed by RIO panel, and all terminations and labeling shall be complete to this panel on both the field and panel side before commencing with the activity. - h. All loop signals shall be tested from the field sensing element, device contract or signal generating device (PLC output module) to the final receiving device (indicator, variable frequency drive, starter, etc.) or PLC input module through all devices in the loop for accuracy and performance. - 7. Wire Termination and Tag Check: - a. All equipment, instrumentation, and accessories are properly tagged. - b. ENGINEER will use the accepted redlined loop drawings provided after the unwitnessed loop check to perform the wire termination and tag check. - c. This activity is a joint effort between the CONTRACTOR and the ENGINEER and shall take place between the unwitnessed loop check and the witnessed loop check. The CONTRACTOR shall work with the ENGINEER to verify that redlined as-built loop drawing wire terminations and tags match those in the field, RIO, PLC and electrical equipment. The CONTRACTOR shall assist the ENGINEER throughout the duration of the wire tag check, which includes opening motor starters, control panels, electrical equipment, panels, valves, equipment, instruments, devices, terminal junction boxes, junction boxes, etc. as requested by the ENGINEER to verify wire terminations and tags in accordance with the loop drawings. - d. The ENGINEER will highlight each complete conductor termination and wire tag during the wire termination and tag check using a "blue" highlighter. Once verified as complete and accurate, the ENGINEER will initial the loop drawing indicating the wire terminations and tags are correct and will sign off the wire tag verification columns in the Wire Tag/Loop Check Tracking Spreadsheet. - e. Any deficiencies noted at this stage shall be recorded by the ENGINEER as punch-list items. Each punch-list item shall be assigned a priority such as prewitnessed loop check, pre-ORT, pre-FAT, pre-RAT, and post-RAT. Punch-list items identified as pre-witnessed loop check shall be completed by the CONTRACTOR and verified by the ENGINEER prior to witnessed loop checks. - f. The CONTRACTOR shall not proceed to witnessed loop check until the wire tag check activity is complete and acceptable to the ENGINEER and all prewitnessed loop check punch list items are complete. ### 8. Witnessed Loop Check: - a. Provide temporary 120VAC power, if required, to loop check all conductors. - b. Use the PLC programming software to check all inputs and outputs to and from the PLC. - c. OC SAN will provide a maximum of two (2) temporary PLCs for the Project. The CONTRACTOR shall provide OC SAN one (1) day to set up and configure a temporary PLC. - d. Perform a witnessed loop check using the same procedures as the unwitnessed loop check, but witnessed by the ENGINEER to demonstrate proper operation. All redline changes to the loop drawings identified during the witnessed loop check shall be documented and submitted for ENGINEER's acceptance prior to moving to ORT. - e. ENGINEER will highlight each successfully tested conductor using a "blue" highlighter. Once the loop check is complete for each loop drawing, the CONTRACTOR shall initial the loop drawing indicating the loop check is correct and shall sign off the witnessed verification columns in the Wire Tag/Loop Check Tracking Spreadsheet. - f. All wiring changes or modifications to equipment, RIO panels, electrical equipment, instruments, devices, etc., after any witnessed loop checks have been completed, shall be witnessed by the ENGINEER to verify none of the previously tested wiring is disturbed. - g. PLC and RIO control panels associated with the commissioning package shall be locked at the end of each day and when loop checks are not being performed. Panels shall remain locked using CONTRACTOR and ENGINEER locks from loop checks through RAT. Any field modifications to the control panels shall be agreed upon by the CONTRACTOR and ENGINEER. ### TABLE 2a LOOP CHECK TESTING - DISCRETE INPUT (NORMALLY OPEN) | Index | Action | Verification | |-------|--------------------------|---| | 1 | Do one of the following: | Verify the input is ON using a laptop networked to the PLC. | | | Trigger a close field switch/contact from the device | | |---|--|--| | | Place a temporary jumper between the terminals | | | | Do one of the following: | Verify the input is OFF using a laptop | | 2 | Trigger an open field switch/contact from the device | networked to the PLC. | | | Remove temporary jumper | | # TABLE 2b LOOP CHECK TESTING - DISCRETE INPUT (NORMALLY CLOSED) | Index | Action | Verification | |-------|---|--| | | Do one of the following: | Verify the input is OFF using a laptop | | 1 | Trigger an open field switch/contact from the device | networked to the PLC. | | | Disconnect one of the wires at the field device to open the circuit | | | | Do one of the following: | Verify the input is ON using a laptop | | 2 | Trigger a closed field switch/contact from the device | networked to the PLC. | | | Reconnect the disconnected wire | | # TABLE 2c LOOP CHECK TESTING - DISCRETE OUTPUT | Index | Action | Verification | |-------|--|--| | 1 | Force the output ON using a laptop networked to the PLC. | Do one of the following: | | | | Verify the field device receives the output responding to a closed circuit (i.e., relay closes, solenoid closes, etc.) | | | | Wire field leads to a multimeter and verify continuity | | | Force the output OFF using a laptop | Do one of the following: | | 2 | networked to the PLC. | Verify the field device loses the output responding to an open circuit (i.e., relay opens, solenoid opens, etc.) | | | | Wire field leads to a multi meter and verify that there is no continuity | # TABLE 2d LOOP CHECK TESTING - DISCRETE INTERCONNECT (NORMALLY OPEN) | Inde | Action | Verification | |------|---|---| | | Do one of the following: | Do one of the following: | | 1 | Trigger a closed field switch/contact from the device | Verify device/panel/equipment/motor starter receives the signal indicating a closed circuit | | | Place a temporary jumper between the terminals | Wire field leads to a multimeter and verify continuity | |---|--|--| | | Do one of the following: | Do one of the following: | | 2 | Trigger an open field switch/contact from the device | Verify device/panel/equipment/motor starter receives the signal indicating an open circuit | | | Remove temporary jumper | Wire field leads to a multimeter and verify that there is no continuity | ## TABLE 2e LOOP CHECK TESTING - DISCRETE INTERCONNECT (NORMALLY CLOSED) | Index | Action | Verification | |-------|---|---| | 1 | Do one of the following: | Do one of the following: | | | Trigger an open field switch/contact from the device | Verify device/panel/equipment/motor starter receives the signal indicating an open circuit | | | Remove one of the wires to open the circuit | Wire field leads to a multimeter and verify that there is no continuity | | 2 | Do one of the following: | Do one of the following: | | | Trigger a closed field switch/contact from the device | Verify device/panel/equipment/motor starter receives the signal indicating a closed circuit | | | Reconnect the disconnected wire | Wire field leads to a multimeter and verify continuity | ### TABLE 2f LOOP CHECK TESTING - ANALOG INPUT | Index | Action | Verification | |-------|--|--| | 1 | Do one of the following after confirming correct source for field device (loop or external power): Use the field device to simulate a 50% signal (12.000 mA). Record the value of the signal in mA to three decimal places on the witness loop check form. Connect wires to a transmitter simulator to simulate 50% signal (12.000 mA). Record the value of the signal in mA to three decimal places on the witness loop check form. | Verify 2048 counts at the appropriate input using a laptop networked to the PLC. Confirm
that the value for the individual channel is not greater than 2051 counts and not less than 2045 counts. Note any values that fall outside of this range. Confirm that the signal is steady (no noise). | TABLE 2a LOOP CHECK TESTING - ANALOG OUTPUT | Index | Action | Verification | |-------|---|---| | | Force the output to 50% or 2048 counts using a laptop networked to the PLC. | Do one of the following: | | | | Verify field device response is at 50% of scale. | | 1 | | Wire field leads to a multi meter. Confirm that the value is not greater than 12.032 mA or less than 11.968 mA. Note any values that fall outside of this range. | | | | Confirm that the signal is steady (no noise). | | | Remove simulation. | Do one of the following: | | | | Verify field device response is 0% of scale. | | 2 | | Wire field leads to a multi meter and verify that the value is not less than032 mA and not greater than .032 mA. Note any values that fall outside of this range. | | | | Confirm that the signal is steady (no noise). | - D. Electrical Equipment Preparation for Energization: - 1. Check for proper equipment installation and grounding. - 2. Check all electrical connections are properly tagged and torqued. - 3. Verify electrical equipment has been properly tested. - E. A post-witnessed loop check inspection shall be performed by the ENGINEER. - F. CONTRACTOR shall not proceed to Phase 1 electrical equipment energization until the witnessed loop check activities are complete and acceptable to the ENGINEER and all pre-electrical equipment energization punch list items are complete. - G. Once all pre-commissioning activities are complete for a commissioning package and the required submittals, including all items identified under pre-commissioning in Table 1a and the Pre-Commissioning Gate Report, are acceptable to the ENGINEER, the CONTRACTOR shall request to begin commissioning Phase 1 for the associated commissioning package and shall request permission to energize the electrical equipment associated with the commissioning package. If the ENGINEER agrees that the CONTRACTOR has successfully completed all pre-commissioning requirements, the ENGINEER will notify the CONTRACTOR in writing that the CONTRACTOR may begin Phase 1 commissioning for the commissioning package and will provide permission to energize. - 3.4 COMMISSIONING PHASE 1, ELECTRICAL EQUIPMENT ENERGIZATION - A. All Pre-Electrical Equipment Energization activities for a commissioning package shall be completed before the CONTRACTOR is permitted to begin commissioning Phase 1 for that commissioning package. B. Obtain the ENGINEER's written authorization to energize each piece of electrical equipment for the first time. ### C. Electrical ORT/FAT Activities - 1. Electrical ORTs shall be performed for all electrical equipment in accordance with Part 3, Article entitled "Commissioning Phase 3, ORT Activities" below, after completion of pre-commissioning activities, NETA testing and after receipt of vendor certificate of proper installation. - 2. Electrical FATs shall be performed for all electrical switchgear systems, generators, uninterruptible power supplies (UPS), battery charging systems, and automatic transfer switches in accordance with Article entitled "Commissioning Phase 3, FAT Activities" below. This test shall check, demonstrate, and document that all local manual, remote and automatic interlocks, switching scenarios, I/O and controls are functional and meet the specified requirements. Any temporary power for testing of breakers, switchgear and battery charger system (125 V dc), if required, shall be provided by the CONTRACTOR. This test will be witnessed by the ENGINEER. Qualified CONTRACTOR and vendor personnel capable of operating and troubleshooting electrical equipment shall be available during this test. Test shall be directed by the CONTRACTOR's Commissioning Coordinator. - 3. ORTs and FATs for motor control centers and variable frequency drives shall be performed during commissioning Phases 3. The Pre-Commissioning activities and Phase 1 Electrical Equipment Energization shall ensure that the electrical equipment is safe, functional, and ready for energization and use during commissioning Phases 2, 3 and 4. ### D. Electrical Equipment Energization - 1. The electrical equipment energization process shall be performed in accordance with manufacturer procedures. - 2. Check power supply for correct voltage and rotation. - 3. Check for correct connections, operation, and performance of electrical power distribution equipment such as switchgear, motor control centers, uninterruptible power system, and dc system specified in Specifications Section 16080, Electrical Testing, and elsewhere in Division 16. - 4. 12kV and 480V switchgear shall be energized after their associated ORTs and FATs are complete. - 5. Post-energization testing shall be performed as described in the other Specifications sections. CONTRACTOR shall use the list developed as specified in Part 1, Article entitled "" Record Keeping System and Tracking Tools" of this section. - 6. Electrical RAT shall be performed during the facility RAT. - E. Vendor training of electrical equipment for OC SAN personnel shall be completed prior to the completion of the associated commissioning package FAT. - F. A post-Phase 1 commissioning inspection shall be performed by the ENGINEER. - G. CONTRACTOR shall not proceed to Phase 2 commissioning until the electrical equipment energization activities are complete and acceptable to the ENGINEER and all pre-Phase 2 commissioning punch list items are complete. - H. Once all Phase 1 commissioning activities are complete for a commissioning package and the required submittals, including all items identified under commissioning in Table 1b and the Commissioning Phase 1 Gate Report, are acceptable to the ENGINEER, the CONTRACTOR may request to begin Phase 2 commissioning for the associated commissioning package. If the ENGINEER agrees that the CONTRACTOR has successfully completed all commissioning Phase 1 requirements, the ENGINEER will notify the CONTRACTOR in writing that the CONTRACTOR may begin Phase 2 commissioning for the commissioning package. ### 3.5 COMMISSIONING – PHASE 2, PRE-ORT ACTIVITIES - A. All pre-ORT activities for a commissioning package shall be completed before the CONTRACTOR is permitted to begin commissioning Phase 3 for that commissioning package. - B. Cleaning and Checking: Prior to testing of all equipment: - 1. Inspect and clean all process and mechanical equipment, devices, and connected piping associated with the commissioning package, so they are free of dirt, debris, and foreign material. - 2. Clean the area associated with the commissioning package. - C. Equipment Preparation for Testing and Operation - 1. Lubricate equipment in accordance with manufacturer's instructions. - 2. Open and close valves by hand and operate other devices to check for binding, interference, or improper functioning. - 3. Check power supply to electric-powered equipment for correct voltage and phase rotation. - 4. Check for proper equipment alignment. - 5. Verify piping systems and associated appurtenances are complete and piping systems are pressure tested. - 6. Verify pipe supports are complete. - 7. Verify proper anchorage and grounding of equipment. ### D. Pre-ORT Activities: - 1. Perform tests recommended by the manufacturer's field service representatives and/or as required by manufacturer's catalogs or specifications. - 2. Test gates and valves under dry conditions using manual controls. Operate between end of travel limits and verify stop position. Repeat operation and adjust as necessary. Verify proper programming and operation of actuator signals to the PLC - (e.g., alarm contact configuration, operation on power fail, etc.). Place gates and valves in their normal position. - 3. Bump all motor-driven devices and equipment in the manual/local mode, independent of the PLC system, to verify proper operation and motor rotation. - 4. Operate pump and motor systems (e.g., motor cooling, seal water, lubrication, etc.) to verify proper operation. - 5. Operate manual gates and valves to verify they properly open and close with no binding. - 6. Operate all mechanical systems to verify proper operation: - a. Plumbing and drainage systems - b. Ventilation systems - c. Plant water, industrial water, City water and plant air systems. - 7. Check and operate pipeline accessories such as air valves and blow-off valves. - 8. Verify electrical operation of auxiliaries including: - a. Solenoids - b. Manual valve limit switches - 9. Vendor equipment pre-check testing and instrumentation calibration. - E. A post-Phase 2 commissioning inspection shall be performed by the ENGINEER. - F. CONTRACTOR shall not proceed to Phase 3 commissioning until the Phase 2 commissioning activities are complete and acceptable to the ENGINEER and all Pre-Phase 3 commissioning punch list items are complete. - G. Once all Phase 2 commissioning activities are complete for a commissioning package and the required submittals, including all items identified under commissioning in Table 1b and the Commissioning Phase 2 Gate Report, are acceptable to the ENGINEER, the CONTRACTOR may request to begin Phase 3 commissioning for the associated commissioning package. If the ENGINEER agrees that the CONTRACTOR has successfully completed all commissioning Phase 2 requirements, the ENGINEER will notify the CONTRACTOR in writing that the CONTRACTOR may begin Phase 3 commissioning for the commissioning package. - 3.6 COMMISSIONING PHASE 3, ORT ACTIVITIES - A. The ORT shall test and document that all equipment and associated systems properly operate in LOCAL, HAND and REMOTE MANUAL
modes of operation using the developed test procedures. - B. ORT tests shall be directed by the Commissioning Team Leader to determine that all equipment, systems and subsystems are properly manufactured, installed, adjusted, and functioning as specified. - C. The ORT is a combined effort between ENGINEER and the CONTRACTOR. This is a complete check of instrumentation, wiring, hardware, and software without water or any other process fluid. - D. Notify the ENGINEER fourteen (14) days in advance of the need to have OC SAN operate existing equipment that is part of an active treatment process (e.g., testing the replacement of an existing motor starter, an existing pump, or operation of existing valves or equipment). - E. Troubleshoot all field, panel wiring, device, instrument and equipment problems. - F. All equipment shown connected to the control system and integrated as part of the system in accordance with the Contract Documents, whether or not supplied and/or installed by the CONTRACTOR, shall be tested as part of the ORT procedures. The CONTRACTOR shall notify the ENGINEER in writing if equipment tested, but not supplied by the CONTRACTOR, is faulty. - G. CONTRACTOR shall not perform a partial ORT on a commissioning package. All equipment within a commissioning package shall undergo ORT together without any significant delay in subsequent testing unless approved by the ENGINEER. - H. CONTRACTOR shall not perform an ORT on a RIO panel until all panel and field wiring is complete and all devices and equipment associated with that RIO panel have gone through pre-commissioning, including instrument calibration and witnessed loop checks. ### I. Software: - 1. This is a combined test involving the hardware and the software. The combined software/hardware system is tested from this point forward. OC SAN will load their developed human machine interface (HMI) graphics and PLC programs prior to the test. CONTRACTOR shall provide OC SAN one (1) day to download the HMI and PLC programs. The CONTRACTOR shall provide the ENGINEER time to test and troubleshoot their program during ORT. Testing shall utilize the installed project PLC. - 2. Load any of their PLC programs at this time and shall be responsible for all troubleshooting, modifications and corrections associated with their software program. The ENGINEER will assist with the testing of the CONTRACTOR's program and shall be notified of all changes being made to the programs. All changes shall be well documented and submitted to the ENGINEER. #### J. ORT Execution: - 1. The Commissioning Team Leader shall conduct a pre-test, walk-through/field meeting and pre-startup checklist with the ENGINEER prior to performing an ORT for each commissioning package to verify all valving, gates, disconnect switches and selector switches are in the proper position for testing. - 2. Energize all equipment that is part of the test. - 3. The Commissioning Team shall follow the accepted ORT procedures. - 4. If a test step is successful, the step shall be signed by the CONTRACTOR and the ENGINEER. - 5. If a test step fails, the Commissioning Team (ENGINEER and/or CONTRACTOR) shall be allowed ten (10) minutes to troubleshoot the item. If the troubleshooting period exceeds ten (10) minutes, the Commissioning Team shall clearly document the failure on the ORT procedure and move on to the next available independent test step. - 6. Once all tests in a procedure are complete, the CONTRACTOR shall investigate the failures, make repairs, and notify the ENGINEER how the repairs were performed. Tests shall be repeated on all failed tests and previously completed tests that were impacted by the troubleshooting or repair activity, as decided by ENGINEER. - 7. Testing shall continue until all tests are signed by the CONTRACTOR and ENGINEER as successful. - 8. Test discrete and analog instrumentation from the field device to I/O or other destination by simulation. Analog instrument signals must be tested at 0%, 25%, 50%, 75% and 100%. CONTRACTOR shall simulate each instrument using the methods described in TABLE 3. If instrument type is not listed here, the CONTRACTOR shall use a method approved by the ENGINEER. The CONTRACTOR shall not use a multimeter or the transmitter to simulate a signal unless given permission by the ENGINEER or it is permitted in TABLE 3. TABLE 3 - Instrument Simulation for Loop Check / ORT | Instrument Type | Simulation Action | |--|--| | Level | Simulate from Transmitter | | Flow | Simulate from Transmitter | | Pressure | Hand Pump | | Temperature | Water/oil Bath | | Gas (i.e., LEL, CO, H2S, etc.) | Calibration Gas – Single Point | | Ph | Calibration Solution | | Chlorine | Calibration Solution | | Weight | Test Load | | ORP | Calibration Solution | | Sludge Density | Known Sample | | Vibration | Simulation Equipment (Shaker or Wobbulator) | | Motor Winding/Bearing Temperature | Verify ambient, Compare to Adjacent | | Electrical Parameters (Voltage, Current, etc.) | Test Power Source | | Motor High Temperature Switch | Disconnect the field wire at the motor | | Limit switch | Operate valve (manual valve)
Operate limit switch (check valve) | - 9. Test of all hardwired controlled functions including interconnects, hand stations, and pilot devices. - 10. Test motorized, solenoid or pneumatic operated equipment local and remote manual modes to verify that the operator can start and stop the equipment locally and view its status using local pilot lights and the PLC/HMI. - 11. Test each interlock for each piece of equipment in the commissioning package(s) while the equipment is running in HAND and REMOTE MANUAL to verify that it shuts off and indication is received. For interlock checkout the following applies: - a. If the equipment requires water to run the CONTRACTOR shall test it uncoupled if it is motor driven. - b. If the equipment requires water to run but cannot be uncoupled or mechanically manipulated to operate without water, interlock testing can be performed with the power disconnected or in FAT with approval by the ENGINEER. - 12. In addition to the tests described herein, OC SAN reserves the right to request additional testing and retesting of equipment. - 13. ORT inspection by the ENGINEER has been performed and all punch list items that are prioritized as pre-FAT are complete. - K. A post-ORT commissioning inspection shall be performed by the ENGINEER. - L. The CONTRACTOR shall not proceed to Phase 3 FAT commissioning until the Phase 3 ORT commissioning activities are complete and acceptable to the ENGINEER and all Pre-FAT commissioning punch list items are complete. - 3.7 COMMISSIONING PHASE 3, PRE-FAT AND FAT ACTIVITIES - A. The pre-FAT shall test that equipment and instruments properly operate with water. - B. The FAT shall test and document that all equipment and systems are properly operated and controlled in the REMOTE AUTOMATIC mode of operation by the PLC and human machine interface (HMI) software and the AUTOMATIC mode of operation by local control panels as intended using the developed test procedures. This test is accomplished with the system on-line under normal operating conditions. Equipment will operate under load with water when possible or the designed process (non-water process) (e.g., air, gas, etc.). - C. Pre-FAT and FAT shall be directed by the Commissioning Team Leader and performed as specified herein. - D. The pre-FAT and FAT is a combined effort between the ENGINEER and the CONTRACTOR. - E. The CONTRACTOR shall furnish and install all required testing piping and appurtenances to verify pump and system performance and operation over the full operating range. All testing piping and appurtenances shall be removed at the completion of FAT testing. - F. The CONTRACTOR shall notify the ENGINEER fourteen (14) days in advance of the need to have OC SAN operate existing equipment that is part of an active treatment process (e.g., testing the replacement of an existing motor starter, an existing pump, or operation of existing valves or equipment). - G. The CONTRACTOR shall troubleshoot all field, panel wiring, device, instrument and equipment problems. - H. Software: - 1. Provide the ENGINEER time to test and troubleshoot their program during pre-FAT and FAT and shall provide the ENGINEER time to tune each process control loop and each process control system the optimize the operation. - 2. Use the permanent PLC to perform the pre-FAT and FAT procedures. - 3. CONTRACTOR shall be responsible for all troubleshooting, modifications and corrections associated with their software program. The ENGINEER will support the testing of the CONTRACTOR's program and shall be notified of all changes being made to the programs. All changes shall be well documented and submitted to the ENGINEER. #### I. Pre-FAT and FAT Execution: - 1. Conduct a pre-test, walk-through/field meeting and pre-startup checklist with the ENGINEER prior to performing a pre-FAT and FAT for each commissioning package to verify all valving, gates, disconnect switches and selector switches are in the proper position for testing all valving, gates, disconnect switches and selector switches are in the proper position for testing to prevent a wastewater spill. - 2. Disinfect any non-potable water that will remain in a tank for a period longer than twenty-four (24) hours to prevent it from going septic. - 3. The Commissioning Team shall follow the accepted pre-FAT and FAT procedures. - 4. If a test step is successful, the step shall be signed by the CONTRACTOR and the ENGINEER. - 5. If a test step fails, the Commissioning Team (ENGINEER and/or CONTRACTOR) shall be allowed ten (10) minutes to troubleshoot the item. If the troubleshooting period exceeds ten (10) minutes, the Commissioning Team shall clearly document the failure on the Pre-FAT and FAT procedure and move on to the
next available test step. - 6. Once all tests in a procedure are complete, the CONTRACTOR shall investigate the failures, make repairs, and notify the ENGINEER how the repairs were performed. Tests shall be repeated on all failed tests and previously completed tests that were impacted by the troubleshooting or repair activity, as decided by ENGINEER. - 7. Testing shall continue until all tests are signed by the CONTRACTOR and ENGINEER as successful. - J. In addition to the tests described herein, OC SAN reserves the right to request additional testing and retesting of equipment. - K. A post-FAT commissioning inspection shall be performed by the ENGINEER. - L. CONTRACTOR shall not proceed to Phase 4 commissioning until the Phase 3 commissioning activities are complete and acceptable to the ENGINEER and all Pre-RAT commissioning punch list items are complete. - M. Once all Phase 3 commissioning activities are complete for a commissioning package and the required submittals, including all items identified under commissioning in Table 1b and the Commissioning Phase 3 Gate Report, are acceptable to the ENGINEER, the CONTRACTOR may request to begin Phase 4 commissioning for the associated commissioning package. If the ENGINEER agrees that the CONTRACTOR has successfully completed all commissioning Phase 3 requirements, the ENGINEER will notify the CONTRACTOR in writing that the CONTRACTOR may begin Phase 4 commissioning for the commissioning package. ### 3.8 COMMISSIONING - PHASE 4, RAT ACTIVITIES - A. The Reliability Acceptance Test (RAT) is designed to functionally test the facility as an integrated system under normal operating conditions using wastewater, foul air, or other process fluid or gas. - B. Reliability Acceptance Test: This test shall be directed by OC SAN personnel. Equipment shall be operated only by OC SAN personnel with support from the CONTRACTOR when requested. The purpose of this test is to demonstrate that all systems operate continuously in the intended manner for an extended period without failing. During the RAT, the system under test will be operated within design parameters reflecting the day-to-day operation of the facilities for an uninterrupted period. The RAT will be considered complete, in the opinion of ENGINEER, when the entire Project or specified portion thereof has operated properly for [seven (7)] continuous days] without significant interruption. Any failure of a process equipment unit (mechanical, electrical, instruments, etc.) shall extend the RAT for ten (10) hours to confirm it is not a significant interruption. - 1. "Significant interruption" during the Reliability Acceptance Test may include any of the following events: - a. Failure of a system (process, control, etc.) that is not permanently corrected within six (6) hours after such failure occurs. - b. Failure of a process equipment unit (mechanical, electrical, instruments, etc.) that is not permanently corrected within eight (8) hours after such failure occurs. - 2. "Permanently corrected" means without a repeat failure during the remaining duration of Phase 4 and shall consist of the following: - a. Work repaired and replaced to conform with specified requirements - b. Parts and components replaced as recommended by original manufacturer without impacting the warranty, and conforming with reviewed submittals - c. Piping and valves properly installed and connected - d. Wiring properly terminated - e. Accessories, including spare parts and lubricants, furnished as specified - f. The facility is back online and operating within normal operating parameters. - 3. Occurrence of a significant interruption shall require RAT to be stopped and restarted at time equals zero (begin at Day 1 again) after permanent corrections are made. - C. Upon completion of the RAT, the CONTRACTOR shall conduct a field meeting with the ENGINEER and operations staff, if the system is to be shut down or taken out of services, to verify that all valves, bleed-off valves, etc. are in the proper position to prevent a wastewater spill when the system is placed back into service. - D. A post-RAT commissioning inspection shall be performed by the ENGINEER. - E. After successful completion of the RAT and acceptance of all Manufacturers' Certificates of Proper Operation and the Commissioning Phase 4 Gate Report by the ENGINEER, the CONTRACTOR may request that the facility is Substantially Complete (refer to the General Conditions). - F. Final Completion is achieved by the CONTRACTOR and certified by the ENGINEER when all final documents and activities as described in Table 1b are complete and accepted by the ENGINEER (refer to the General Conditions). ### G. Continuous Operation 1. After successful Reliability Acceptance Test of a specific equipment or system, OC SAN may elect to operate a portion of the equipment or system for continuous operation. Such operation will not interfere with testing of other equipment and systems that may still be underway and shall not preclude the need to start up the portion operated in combination with the rest of the facility when all testing is completed. * * * * * * # **ATTACHMENT A1** ### **RULES OF ENGAGEMENT** This document describes options for OC San to utilize a Programming Professional Services (PPS) agreement to maintain the Engineering Project program while complying with Independent Contractor expectations. There are two mechanisms by which professional services can be supplied through the PPS agreement: - Task Authorizations - Task Directives Task Directives assignments require that anyone working under the mechanism also have an approved Personnel Authorization. These Terms of Engagement are intended to document how services are to be requested, authorized, and managed. ### **Task Authorizations** Task Authorizations have a formal scope of work, and a fixed upper limit. Distinguishing aspects of Task Authorizations include the following: - Requests for Task Authorization Proposals (RFTAPs) require a scope of work prepared by OC San staff. - RFTAPs and Task Authorizations must be approved by the Director of Engineering (DOF) - The scope of work should have the same level of detail as used for a Design Task Order or Planning Study Task Order, including schedule requirements, task, deliverables, and assumptions. - Task Authorization must specify a firm negotiated upper limit which may not be exceeded. If changes require a revision to that upper limit, it must be processed as a formal Task Authorization Amendment prior to the work being authorized and performed. - The PPS Consultant shall report costs incurred for the Task Authorization in their monthly invoices, with the total costs incurred to date, and the unused budget remaining. - The PPS Consultant may use any of their staff, whether they have an approved Personnel Authorization or not. - The time that PPS Consultant staff charge to Task Authorizations does not count against their approved number of hours for Personnel Authorizations. ### **Task Directive** Task Directives also have an explicit scope of work, but the level of detail may be lower. Task Directives need a negotiated budgetary estimate, but it is not a firm upper limit. - The scope of work for Task Directives may be less detailed than what is required for a Task Authorization. - A schedule to complete the work should generally be specified but is not always required. - Costs are tracked separately on invoices. Personnel Authorizations are required for any staff working on a Task Directive. ### **Personnel Authorizations** Personnel authorizations (PA's) provide the DOE's approval for a particular individual to work on Task Directives. They also designate the following: - The Project Role - Their location as either Home Office or Site. This impacts the overhead rate to be used for billing. - The number of hours per week, or just a set number of hours as needed. - The total bill rate, including actual salary, overhead, and profit. - Any reimbursable expenses. This is typically used when travel is required or when a staff member needs a vehicle assigned to them due to the nature of their assignments. The following apply to Personnel Authorization: - They require approval by the DOE. - They are specific to one person. - They need not be project specific. - For on-site PA's, the PA authorizes key cards. ## Staff Supervision The PPS Consultant is responsible for supervision of its entire staff, including the following: - Administrative Supervision (PPS Consultant staff only) - o Performance Reviews - Timecard Approvals - o Work Hours - Supervision of Assigned Scope Deliverables - Work Prioritization - o Technical input, guidance, and direction - Quality Control for - Task Authorizations - Task Directives, when Quality Control is specified in the scope of work OC San will not be responsible for supervision of PPS Consultant staff. OC San will however provide direction as an Owner. Examples include the following: - Project decisions and priorities - Design standards - OC San's preferences - Financial considerations - Risk considerations - Review for compliance with OC San Policies and Procedures - Coordination with other OC San projects and activities