

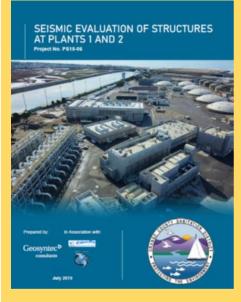
Seismic Evaluation of Structures at Plant Nos. 1 and 2

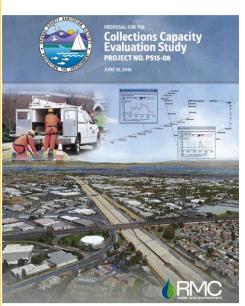
Project PS15-06

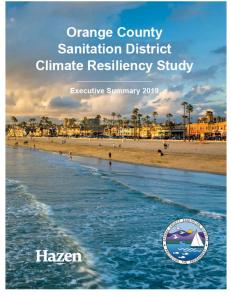
Kathy Millea, Director of Engineering

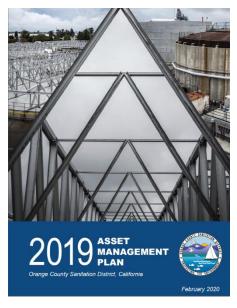
Operations Committee

May 6, 2020


Fostering Resilience at OCSD






Seismic Evaluation
Study

Collections Capacity Evaluation Study

Climate Resiliency
Study

Asset
Management Plan

Long History of Seismic Evaluations

1991

Seismic Risk
Analysis Plants 1
and 2
Evaluated process
facilities at Plant
Nos. 1 and 2
relative to their
performance to
1991 Building Code

2014

Digesters and
Tunnels Seismic
Hazard Evaluation
Quantify the
vulnerability of
Plant No. 2
digesters and
associated facilities

SP-182: Plant No. 2

2018

PS15-06: Seismic Evaluation of Structures at Plant Nos. 1 and 2

Evaluated process facilities at Plant Nos. 1 and 2 constructed prior to 2001 Building Code

Long History of Seismic Evaluations

1991

Seismic Risk
Analysis Plants 1
and 2
Evaluated process
facilities at Plant
Nos. 1 and 2
relative to their
performance to
1991 Building Code

2014

Digesters and
Tunnels Seismic
Hazard Evaluation
Quantify the
vulnerability of
Plant No. 2
digesters and
associated facilities

SP-182: Plant No. 2

2018

PS15-06: Seismic Evaluation of Structures at Plant Nos. 1 and 2

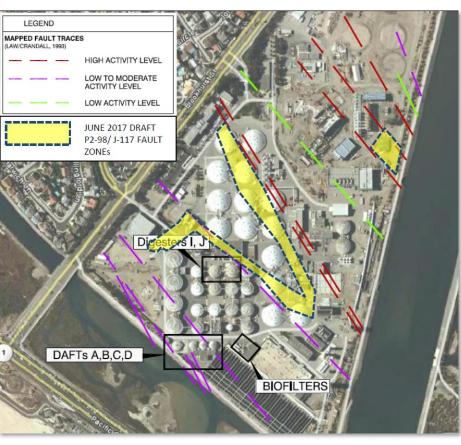
Evaluated process facilities at Plant Nos. 1 and 2 constructed prior to 2001 Building Code

Seismic Risks

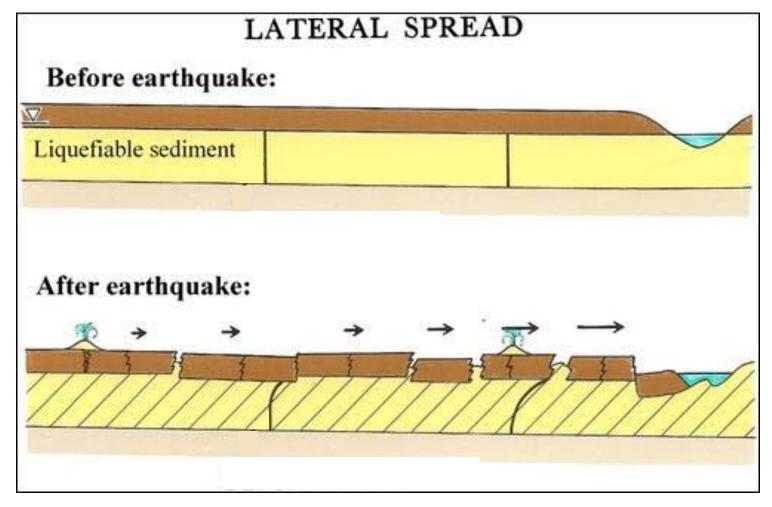
Liquefaction

Lateral Spread

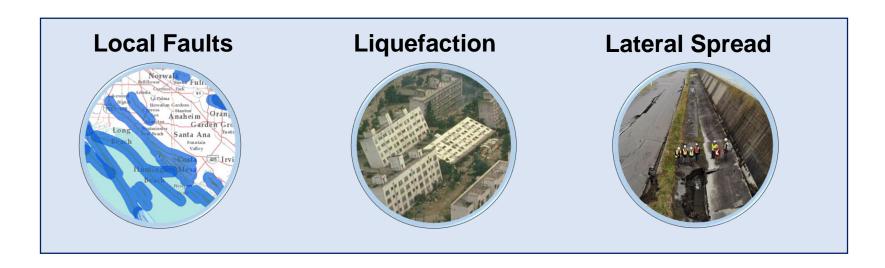
Several Local Faults Impact Seismic Hazards




Potential Liquefaction Hazard Zone


Lateral Spread a Risk

Lateral Spread a Risk



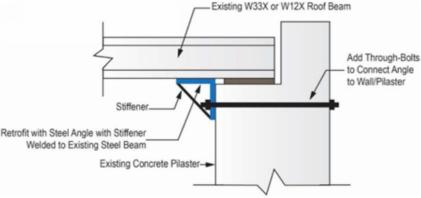
If this is the problem...

What is the solution?

Structural Mitigation

Vulnerability

Separation of the roof element from the wall caused roof to collapse



Ref: 1994 Northridge Earthquake. EERI, Earthquake Engineering Research Institute

Mitigation

Installation of wall anchorage

Geotechnical Mitigation

Vulnerability

Soils became liquified during a seismic event, reducing the ground's ability to support loads

Niigata Japan, June 16, 1964 Photo Credit: National Geophysical Data Center

Mitigation

Deep soil mixing is one alternative to stabilize soil by "cementing" the sand particles together

Lateral Spread Mitigation

Vulnerability

Seismic event causes soil to move laterally towards a free surface of lower elevation (river bed)

Ref: Michael J. Crozier, 'Landslides - Hill country, regolith and submarine landslides', Te Ara - the Encyclopedia of New Zealand

Mitigation

Installation of closely spaced piles effectively creates a "wall" that is designed to resist lateral soil movement

Summary of Seismic Risk Mitigation

63 Structures Evaluated

Designed to older Building Codes that do not consider current seismic performance criteria

48 Structures Identified with Structural and/or Geotechnical Deficiencies

Deficiencies from design code changes that influence loading conditions and building performance during seismic events

16 Structures Impacted by Lateral Spread

Caused by liquefiable soils and vertical separation between the plant sites and the Santa Ana River or Talbert Marsh

13 Structures Improved Under Planned Projects

Identified in the 2017 Facilities Master Plan; separate seismic projects will be created for other facilities

3 Structures Require Complete Replacement

The seismic upgrade costs are greater than the value of the structure

Mitigation Costs	Plant 1	Plant 2
Structural	\$25 M	\$16 M
Geotechnical	\$11 M	\$143 M
Lateral Spread	\$100 M	\$50 M
	1-8	

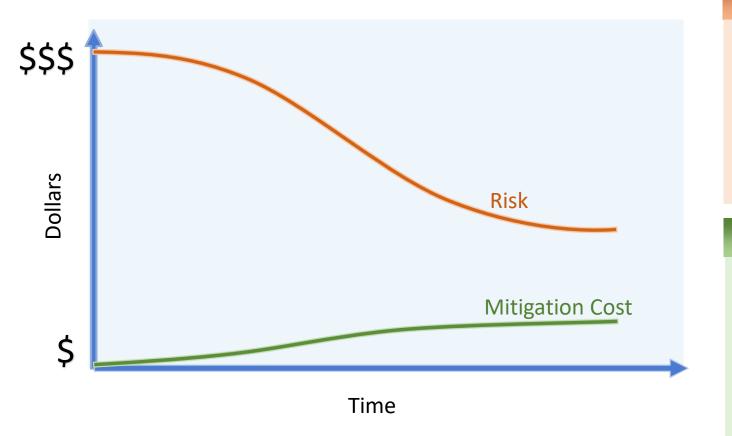
Recommendations

Study Summary

Budget Proposal

Mitigation Costs	Plant 1	Plant 2
Structural	\$25 M	\$16 M
Geotechnical	\$11 M	\$143 M
Lateral Spread	\$100 M	\$50 M

Mitigation Costs	Plant 1	Plant 2
Structural	\$25 M	\$16 M
Geotechnical	\$9 M	\$125 M
Lateral Spread	\$100 M	\$50 M


A Strategic Seismic Program Will Reduce Long-Term Risk

Risks

Replacement costs of critical facilities that may be compromised from a seismic event

Seismic Program

Implementation costs of performing seismic rehabilitation of facilities

Questions?

